- 相关推荐
第七册相遇问题求时间
教学内容:第7册教科书第91页例4,92页的练一练及相关练习。
素质教育目标
(一)知识教学点
1.使学生进一步认识相遇问题应用题的结构.
2.通过分析相遇问题的数量关系,较熟练掌握相遇问题的思考方法.
3.学会解答已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
(二)能力训练点
1.如何根据两地之间的路程和两个物体运行的速度,求相遇时间.
2.提高学生解答实际问题的能力.
(三)德育渗透点
1.培养学生积极动脑,独立思考的良好习惯.
2.通过应用题的教学培养学生热爱数学的品质.
教学重点:进一步认识相遇问题应用题的结构,能根据相遇问题的数量关系学会已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
教学难点:如何根据相遇关系式解答相遇求时间的各类应用题.
教具学具准备:自制活动投影片一套,小黑板两块.
教学步骤
一、铺垫孕伏
1.投影出示:小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经3分钟两人相遇.两地相距多远?
(1)读题
(2)用两种方法解答
2.导入:
(1)引导学生把这题所求问题变为条件,改编成求相遇时间的应用题.
(2)出示改编后的例6,两地相距270米.小东和小英同时从两地出发,相对走来.小东每分钟走50米,小英每分钟走40米.经过几分钟两人相遇?这就是我们这节课要学的求相遇时间的应用题.(板书相遇求时间)
二、探究新知
1.教学例6,读题理解题以后解答
(1)这题告诉我们哪些条件?(相距路程,两人速度)
(2)要求的问题是什么?(相遇时间)
2.演示自制投影片.
第一次演示:你发现了什么?启发学生思考:
(1)小东走了多少米?(50米),小英走了多少米?(40米)
(2)两人共走了多少米?(50+40=90米)
(3)用了多少时间?(1分)为什么只用了1分钟?(因为他俩是同时出发)
(4)这时两人相距多少米?(270-90=180米)
第二次演示:请认真观察,根据第一次演示的思考方法讨论,你知道了什么?
引导学生知道:
(1)现在小东走了100米,小英走了80米.
(2)他们都用了2分钟,老师追问:为什么两人用的时间相同?
(3)现在两人共走了180米.(100+80=180米)
(4)两人还相距90米.(270-180=90米)
3.归纳
提问:通过以上两次演示还知道了什么?
引导学生知道:
(1)小东和小英走的时间是相同的.
(2)小东和小英走1分钟就是90米,走2分钟就是180米.
(3)如果小东和小英再走1分钟就走完全程相遇了.
提问:是不是呢?老师指名学生到前面演示.从中你发现了什么?
(4)小东和小英走完全程(相遇)用了3分钟.提问:
(1)这3分钟就是什么?(相遇时间)
(2)讨论:是怎样得来的?
引导学生知道:
(1)小东和小英同时出发1分钟就走90米,270米里有3个90米,所以两人同时走完270米就用了3分钟,也就是这题求的相遇时间.
(2)归纳数量关系,引导学生知道:
①270米是路程
②90米是速度
③3分钟是时间
④数量关系式是:路程÷速度=时间
4.列综合算式独立解答
三、巩固发展
1.甲乙两个车站相距270米,两辆汽车从两站同时相对开出,甲车每小时行50千米,乙车每小时行40千米,开出几小时两车相遇?改变条件出示:
提问:(1)根据今天学的数量关系解这题的关键是什么?
(2)说解题思路
①如果乙车每小时比甲车慢10米,几小时后两车相遇?
②如果乙车每小时行40千米,比甲车每小时少行10千米,几小时后两车相遇?
思考后先独立完成,然后汇报解题思路.
③如果甲车3小时行150千米,乙走2小时行80千米,几小时后两车相遇?
分组讨论,汇报解答思路,并列出综合算式.
引导学生思考:通过解答以上这三个小题,你知道了什么?引导学生回答:我知道了解相遇求时间这类题,都要先找出甲乙的速度各是多少和相遇时间,如不直接告诉我们,根据题意求出来,再按数量关系式解答.
2.根据条件列算式并说明理由甲乙两地之间的公路长540千米.两辆汽车相对而行,甲车每小时行65千米,乙车每小时行70千米,经过4小时两车相遇.
(1)(65+70)×4=540 (2)540÷(65+70)=4
(3) 540÷65-70=65 (4) 540÷70-65=70
(5)540-65×4=70× 4 (6)540-70×4=65×4
四、全课小结:引导学生总结这节课学习了什么知识?
五、布置作业
六、板书设计
应用题
复习题小黑板
速度×时间=路程
例6
路程÷速度=时间
(速度的和)(相遇时间)(速度的和)(相遇时间)
270÷(50+40)
=270÷90
=3(分)
【第七册相遇问题求时间】相关文章:
相遇问题教学反思08-25
《相遇问题》教学反思04-06
相遇问题教学反思04-06
《相遇问题》教学设计方案08-22
相遇问题教学反思15篇04-06
“求平均数问题”的数学活动课08-18
小学五年级数学《相遇问题》教案04-03
小学数学五年级上册《相遇问题》教案11-20
“时间问题”的解题思路和方法08-16
第七册美术教案03-03