现在位置:范文先生网>教案大全>数学教案>六年级数学教案>比的基本性质数学教案

比的基本性质数学教案

时间:2022-06-09 12:21:31 六年级数学教案 我要投稿

比的基本性质数学教案

  作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?以下是小编为大家收集的比的基本性质数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

比的基本性质数学教案

  比的基本性质数学教案 篇1

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第55页例9、例10和练一练,第56~57页练习九第5~8题。

  教学目标:

  1、学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

  2、教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重点:

  理解比的基本性质。

  教学难点:

  分数比和小数比的化简。

  教具准备:

  多媒体课件

  教学过程:

  1、填空

  一、创设情境,导入新课

  13÷18==()∶()

  师:除法、分数和比之间有什么联系?

  2、做复习题

  师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

  3、导入课题:

  我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

  二、学习新课

  1、教学例9比的基本性质。

  (1)学生填表

  (2)体温:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

  (3)师生共同总结比的基本性质

  演示课件“比的基本性质”

  比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

  (4)师:你觉得哪些词语比较重要?0除外你怎样理解得?

  2、教学例10应用比的基本性质化简比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  出示:把下面各比化成最简单的整数比

  (1)12:18(2)(3)1.8:0.09

  (1)让学生试做第(1)题

  师:你是怎么做的?6和12、18有着怎样的关系?

  引导学生小结出整数比化简的'方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

  (2)化简(2)

  师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

  (3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

  (4)化简(3)1.8:0.09

  师:想一想如何化简小数比呢?

  让学生独立在书上化简,指名板演

  师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

  三、巩固反馈

  1、师:把55页练一练第1题填完整

  集体校对,让学生说说是怎样想的?

  2、完成练一练第2题。

  独立化简,指名板演。

  追问:分数比化简,可以怎样变成整数比?小数比化简呢?

  3、做练习九第5题

  指出:比的前项和后项都乘或除以同一个不是0的数,这两个比的比值相等。

  4、选择

  1、1千米∶20千米=()

  (1)1∶20(2)1000∶20(3)5∶1

  2、做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()

  (1)20∶21(2)21∶20(3)7∶10

  5、练习九第7题

  6、完成练习九第8题

  四、课堂小结

  师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  板书设计:

  略

  比的基本性质数学教案 篇2

  教学目标

  1.利用知识的迁移规律,使学生理解比的基本性质。

  2.通过学生的自主探讨,掌握化简比的方法并会化简比。

  3.初步渗透事物是普遍联系和互相转化的辩证唯物主义观点

  教学重点

  理解并掌握比的基本性质

  课前准备

  课件、实物投影仪

  课时安排:

  1课时

  教学过程

  一、复习引入

  1.复习比和分数、除法之间的关系

  2.提问:比和除法,比和分数之间有那些联系?

  引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流

  3、出示三个分数:3÷4、6÷8、9÷12.变为比,并比较大小

  指名回答小组交流的结果.学生用语言表述比的基本性质。

  交流:比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫比的基本性质。

  教师引导交流:0除外是什么意思?

  学生交流,比的后项、除数是0没有意义。

  二、学习化简比

  1、说明:利用商不变的规律可以进行除法的'简算;根据分数的基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

  讨论.你怎样理解“最简单的整数比”这个概念?

  学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数。

  请个别学生举一个最简单的整数比。

  2、把下面各比化成最简单的整数比。(强调化成最简单的整数比—互质)

  14:2154:18

  教师引导交流:怎样把一个比化成最简单的整数比?

  总结方法:用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。或用求比值的方法算,最后结果仍然是个比。

  1÷10:3÷83/5:5/8

  教师引导交流:怎么把分数比化成最简单的整数比?

  总结方法:比的前项后项分别乘它们分母的最小公倍数,就化简成最简整数比。

  1.25:42.7:18

  教师引导交流:怎么把小数比化成最简单的整数比?

  总结方法:先将小数化成整数,再化简成最简单的整数比。

  3、练习:化简比

  60:245/8:7/245/4:0.75

  三、练习

  自主练习5、7、8

  四、小结:

  比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

  比的基本性质数学教案 篇3

  教学目标:

  1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  教学重点:

  1、理解比的基本性质。

  2、运用比的基本性质进行化简比。

  一、探究新知

  (一)比的基本性质

  1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?——小研究(后附)

  (1)4人小组交流(2)全班交流

  (3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

  (4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

  2、联系除法中商不变的性质和分数的.基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

  3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?

  4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

  5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

  (二)化简比——完成练习题(后附)

  1、小组交流

  2、全班交流

  小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

  结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

  二、巩固练习

  1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

  2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

  3、拓展练习

  3:8=(3+6):(8+)

  (让学生分小组讨论方法)

  三、课堂总结

  这节课有哪些收获?师生共同总结。

  ()年()班姓名

  比的基本性质小研究

  你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

  方法一

  方法二

  方法三

  方法四

  我的发现:

  聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

  序号

  比

  我的方法

  (写出过程)

  1、

  14:21

  2、

  36:15

  3、

  1/6:2/9

  4、

  2/3:3/4

  5、

  1.25:2

  6、

  5.6:4.2

  我的发现:

  比的基本性质数学教案 篇4

  教学内容:

  课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

  教学目的:

  使学生理解比的基本性质,掌握化简比的方法。

  教学过程.:

  一、复习。

  1.除法中的商不变规律是什么?

  2.分数的基本性质是什么?

  3.比与除法有什么关系?

  4.比与分数有什么关系?

  二、新授。

  1.教学比的基本性质。

  我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的`分子,比的后项相当于分母。

  问:在比中有什么样的规律?

  引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

  问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

  2.教学化简比。

  利用比的基本性质,我们可以把比化成最简单的整数比。

  出示例1:把下面各比化成最简单的整数比。

  (1)、

  问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)

  (2)、

  问:这是一道分数比,怎样才能使它转化成整数比?(引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)

  化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

  (3)、

  问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)

  或

  3.小结:

  问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

  三、巩固练习。

  1.完成“做一做”的题目。

  让学生说一说化简的方法。

  2.练习十四第5、7、8题。

  3.练习十四第9题。

  提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)

  四、作业。

  1.练习十四第6、10题

  2.一列火车15小时行驶1200千米。

  (1) 写出行驶的路程和时间的比,并化成最简单的整数比。

  (2) 求出这个比的比值,再说出这个比值的含义是什么?

【比的基本性质数学教案】相关文章:

分数的基本性质数学教案02-09

比例的意义和基本性质的数学教案02-08

比的基本性质说课稿12-17

比例的意义和基本性质的数学教案4篇02-08

分数的基本性质说课稿01-17

《比的基本性质》教学反思03-12

比的基本性质教学反思01-11

《分数的基本性质》说课稿01-17

数的整除,分数、小数的基本性质数学教案设计10-22