现在位置:范文先生网>教案大全>数学教案>六年级数学教案>圆锥的体积教学设计

圆锥的体积教学设计

时间:2022-08-16 20:35:34 六年级数学教案 我要投稿
  • 相关推荐

圆锥的体积教学设计

  圆锥的体积教学设计 
  教学内容:小学数学人教版第12册42页—43页
  教学目标:
  1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
  2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
  3、培养学生个人的自主学习能力和小组合作学习的能力。
  教学重点和难点:掌握圆锥体体积公式的推导。
  教具准备:1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。
  2、多媒体课件设计
  教学过程设计
  (一)复习准备:
  1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)
  2. 一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
  3. 圆锥有什么特征?
  学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。
  (二)导入新课
  今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)
  (三)进行新课
  1、              探讨圆锥的体积公式
  教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
  学生回答,教师板书:
  圆柱------(转化)------长方体
  圆柱体积公式--------(推导)长方体体积公式
  教师:借鉴这种方法, 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
  (1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
  (学生得出:底面积相等,高也相等。)
  底面积相等,高也相等,用数学语言说就叫“等底等高”。
  (板书:等底 等高)
  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
  的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
  (3)学生分组做实验。
  A. 谁来汇报一下,你们组是怎样做实验的?
  b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
  (学生发言:圆柱体的体积是圆锥体体积的3倍)
  同学们得出这个结论非常重要,其他组也是这样的吗?
  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
  呢?(在等底等高的情况下。)
  (老师在体积公式与“等底等高”四个字上连线。)
  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
  今后我们求圆锥体体积就用这种方法来计算。
  (三)巩固反馈
  1.口答。填空:
  v (立方米)
  v (立方米)
  60
  52
  126
  4.5
  2.出示例题学生读题,理解题意,自己解决问题。
  例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
  A    学生完成后,进行小组交流。
  B    你是怎样想的和怎样解决问题。(提问学生多人)
  C    教师板书:
  ×19×12=76(立方厘米)
  答:它的体积是76立方米
  3.练习题。
  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
  4、出示例2:要求学生自己读题,理解题意思。
  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
  (1)提问:从题目中你知道什么?
  (2)学生独立完成后教师提问。并回答同学的质疑:3.14×( )×1.2× 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
  5、比较:例1和例2有什么地方不同?
  (1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。
  我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
  四、巩固练习:
  1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
  2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。
  (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是(    )
  ⑴ 立方米       ②3a立方米   ③  9立方米
  (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是(    )立方米
  (1)6立方米 (2)3立方米   (3)2立方米
  2、             学生操作:
  看看我们的教室是什么体?(长方体)
  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
  指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。
  五:这节课你有什么收获?
  六、作业:书本44页第3、4、5。
  板书:  圆柱体的体积=底面积×高               
  例1:    ×19×12=76(立方厘米)
  答:它的体积是76立方米
  例2:(1)麦堆的体积:
  3.14×( ) =12.56(平方米)12.56× ×1.2=5.024(平方米)
  (2)小麦的重量:5.024×735=3692.64(平方米)≈3693(平方米)
  答:它的体积是76立方米

圆锥的体积教学设计


【圆锥的体积教学设计】相关文章:

圆锥的体积教学反思04-19

《圆锥的体积》教学反思04-03

圆锥的体积说课稿07-09

《圆锥体积》教学反思04-02

圆锥的体积教学反思15篇03-31

圆锥的体积教学反思(15篇)04-06

《圆锥的体积》的优秀说课稿03-21

《圆锥的体积》教学反思(通用23篇)12-01

《圆锥的体积》教学反思(通用22篇)02-24

圆锥的体积教学反思(通用18篇)03-24