《多边形的内角和》教案
七年级数学下册《多边形的内角和》教案
黑龙江省宾县宾西镇第二中学 杨显英
设计理念:
众所周知,数学课堂是以学生为中心的活动的课堂。通过动手实践、自主探索、合作交流的过程,达到知识的构建,能力的培养和意识的创新及情感的陶冶。这也是实现数学教育从“文本教育”回归到“人本教育”。为此,就《多边形的内角和》这一课题,我创造性的使用教材,从七个方面说一下我的教学设想。
一教材分析:
从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。
二、学情分析:
学生刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价,互相提问的积极性高。因此对于学习本节课内容的知识条件已经成熟。学生参加探索活动的热情已经具备。因此把这节课设计成一节探索活动课是必要的。
三、教学目标的确定:
新课程标准注重教学内容与现实生活的联系,注重学生经历观察、操作、推理、想像等探索过程。根据学生现有的知识水平,依据课程标准的要求,我确定了以下的教学目标。
知识技能:掌握多边形的内角和公式
数学思考:1、通过动手实践,自主探索,交流互 动,能够将多边形的问题转化为三角形的问题。从而深刻理解多边形的内角和,并会加以应用。
2、通过活动,发展学生的合情推理能力,积累数学活动经验,在探索中学会交流自己的思想和方法。
3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。
解决问题:通过探索多边形的内角和公式,使学生尝试从不同的角度寻求解决问题的方法并能有效的解决问题。
情感态度:让学生体验猜想得到证实的成功喜悦和成就感。在解题中感受数学就在我们身边。
四、重难点的确立:
既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。
【《多边形的内角和》教案】相关文章:
《多边形的内角和》数学教案02-09
多边形内角和的教案(通用10篇)04-26
多边形的内角和教学反思08-24
初中数学多边形的内角教案12-30
初中数学多边形的内角教案3篇01-02
《多边形的外角和》教学反思03-14
多边形的外角和教学反思02-24
《三角形内角和》数学教案02-15
《三角形内角和》数学教案07-05
《三角形内角和》数学教案12篇03-26