现在位置:范文先生网>教案大全>数学教案>九年级数学教案>数学教案-圆内接四边形

数学教案-圆内接四边形

时间:2024-01-08 08:20:04 立宇 九年级数学教案 我要投稿

数学教案-圆内接四边形

  作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编收集整理的数学教案-圆内接四边形,欢迎大家分享。

数学教案-圆内接四边形

  一、教学目标:

  掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

  二、教学重点和难点:

  重点:圆内接四边形的性质定理。

  难点:圆内接四边形性质定理的准确、灵活应用。

  三、教学过程:

  1、带领学生复习圆内接三角形和三角形的外接圆的概念。

  2、利用几何画板:

  (1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?

  (学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)

  ①通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

  ②利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:圆内接四边形的对角互补。(书写符号语言)

  (2)对定理进行巩固

  ①如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=140°,则∠BAD= °∠BCD= °

  ②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°

  (3)外角的引入

  紧接着前面的练习,和学生共同研究探索题:

  (对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)

  当学生最后得到∠E的度数后,立即提问:

  从∠A= 70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形

  再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。

  (书写符号语言)

  (4)对定理进行必要的巩固练习

  如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?

  (5)讲解例题:

  如图,⊙O1和⊙O2都经过A、B两点,经过点A的直线与⊙O1相交于点C,与⊙O2相交于点D,经过点B的直线与⊙O1相交于点E,与⊙O2相交于点F.试猜想CE和DF有何特殊的位置关系?并加以证明。

  (突出作辅助线的必要性,并在黑板上书写过程)

  3、课堂小结:

  通过本节课的学习,你学会了那些知识点?(学生完成)

  4、课堂练习:

  (1)如图,已知∠BAE=125°,则∠BCD= °∠BOD= °

  (2)如图,已知在圆的内接四边形中,AB=AC,E是CD延长线上一点,你能猜想出∠ADE和∠ADB的大小关系吗?并证明。

  (3)探索:

  圆内接平行四边形是什么特殊的四边形?

  (给学生一定的时间思考,然后充分利用几何画板,让学生自己上前去操作电脑拖动鼠标移动平行四边形,调动学生思维的积极性,并且让学生的思维得到了充分的展示)

  思考:

  你能说出下面图中有几对相似三角形吗?并说出其中一对相似三角形的证明过程。

  (4)

  5、布置作业:P86—15、16、17

  注:参加2003年12月区评优课比赛并获一等奖

  扩展阅读:《圆内接四边形》教学反思

  今天,教学内容是《圆内接四边形》,这是继《圆周角》教学内容之后的第二个课时。教学内容是通过上一节所学的“圆周角定理”得出“圆内接四边形的对角互补”,其中还需要讲解“圆内接四边形”概念,及例题。

  我初步设计的教学方案是:通过习题回顾------引出图形“圆和四边形”------介绍圆内接四边形的概念------提出讨论:是否每一个四边形均有外接圆?------引发探讨:圆内接平行四边形(菱形、梯形等)是什么特殊四边形?为什么?(合作交流)------例题讲解(学生探究)------自主练习------总结归纳------布置自行设计的作业(涉及到圆周角定理及圆内接四边形定理的题目,因课本后没有相应练习)。

  开始的教学非常顺利,习题回顾对学生巩固昨天所学起到很好的作用,说明“圆周角”的内容学生应该基本掌握。而且这道题的图形正好出现“圆与四边形”,顺其自然地,我很自然地提出“圆内接四边形”的概念,并加以讲解。当我提出问题:是否每一个四边形均有外接圆?此时,学生进入到沉思时间,学生们的思想正在高速运行。令我惊讶的是,短时间中就有学生回答:不一定,理由是必须满足“四个顶点到同一个定点的距离相等。”学生的回答让我高兴,说明学生对一个多边形能否有外接圆的要求理解透彻!还说明学生对“圆”的概念理解深刻,还能证明我所教的学生的思维敏捷,反应迅速,综合能力强!

  紧接下来,为了保持这种良好的思维程度,调动所有学生参与讨论的积极性,我马上提出问题:圆内接平行四边形是( )。这是一个填空问题,按理说,前面的问题都能很快回答出来,这种题目对学生来说应该简单。但是,出乎预料的是,学生说道的答案竟然有“矩形、正方形”,此时的我,真的不知道说什么好!竟然有一个数学还好的学生说:矩形或正方形。我马上说:学生还分小学、初中、高中生。他竟然没有反映!但是很多同学反映了,只能是矩形。这位同学可能是站着很紧张,可以愿谅的。

  当大家都认可之后,我提出问题:为什么?

  所有学生都沉默了!

  时间在流失,离下课时间越来越少了。本来才40分钟,不能这样流失。我说:有没有一点思路?接下来又说:证明一个平行四边形有哪些方法?

  学生在想,有学生在轻轻回答,当然,他们能把如何证明一个平行四边形是矩形的方法说出来,这点我表扬了他们。

  我想还是让学生来答证明方法,必竟是很容易的。但是,我也想不到的结果出现了。

  学生1:因为对边平行,所以邻角互补,又因为另一组对边平行,所以另一组对角互补,所以有角相等。同理,对角相等。当我听到这时,我吃惊了!我说:为什么要证平行四边形对角相等?难道没有学过吗?(因为筹建宜春八中,没有上他们的课),但学生们都说:学过!

  学生2:证明四个角是直角。

  学生3:证明有一个角为直角

  ……

  种种方法,让我哭笑不得。我没有想到,学生对四边形的知识是这样的贫乏。基本理论的缺失,真的让学生解决问题无从下手。我想:这节课我一定会拖堂的(因为我上课从未出现过拖堂现象,但今天必须,我没有办法了)!

  我只有自行解说了:平行四边形,对角相等;又是圆内接四边形,所以对角互补,所以这两个角都等于90度。所以这个平行四边形是矩形!学生听后,大声笑了,他们说这么简单?我说:就这么简单,难道你认为有错吗?学生说:没有。

  课后,我想,为什么学生这么简单的问题都答不出?根据学生这节课的反映,说明他们以前的基本知识缺乏,所以思维没有跟上。在以后的教学中,特别要注意以前的知识与现在知识的联系,多向学生讲解,这样才能有收获!

【数学教案-圆内接四边形】相关文章:

数学教案-圆的内接四边形08-17

圆的内接四边形08-17

第六册圆内接四边形08-17

圆内接四边形 —— 初中数学第六册教案08-17

数学教案-圆08-17

圆数学教案03-29

数学教案-圆和圆的位置关系08-17

数学教案-圆的方程08-17

数学教案圆的周长05-31