现在位置:范文先生网>教案大全>数学教案>高一数学教案>上学期 2.8 对数函数

上学期 2.8 对数函数

时间:2022-08-17 03:33:29 高一数学教案 我要投稿
  • 相关推荐

上学期 2.8 对数函数

教学目标

  1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

  2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

  3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

教学重点,难点

  重点是理解对数函数的定义,掌握图像和性质.

  难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

教学方法

  启发研讨式

教学用具

  投影仪

教学过程

一. 引入新课

  今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  提问:什么是指数函数?指数函数存在反函数吗?

  由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

.又 的值域为

   所求反函数为

  那么我们今天就是研究指数函数的反函数-----对数函数.

2.8对数函数 (板书)

一. 对数函数的概念

  1. 定义:函数 的反函数 叫做对数函数.

  由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件

  在此基础上,我们将一起来研究对数函数的图像与性质.

二.对数函数的图像与性质 (板书)

  1. 作图方法

  提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

  由于指数函数的图像按 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 ,并分别以 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

 

2. 草图.

  教师画完图后再利用投影仪将 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3) 截距:令 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

                 当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

三.简单应用  (板书)

1. 研究相关函数的性质

例1.  求下列函数的定义域:

  (1)      (2)    (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小 (板书)

例2.  比较下列各组数的大小

  (1) ;      (2) ;  

  (3) ;           (4)

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.巩固练习

练习:若 ,求 的取值范围.

四.小结

五.作业 略

板书设计

2.8对数函数

一. 概念                                              

  1.  定义   2.认识

二.图像与性质                                  

  1.作图方法

  2.草图 

   图1    图2  

  3.性质                        

  (1)    定义域(2)值域(3)截距(4)奇偶性(5)单调性

三.应用

  1.相关函数的研究

  例1    例2

  练习


【上学期 2.8 对数函数】相关文章:

对数函数教学反思04-02

信息技术2.8培训心得(通用15篇)10-26

学期散学典礼上的讲话08-21

高一数学对数函数教案08-26

高一数学对数函数教案(7篇)12-22

高一数学对数函数教案7篇12-21

高一数学对数函数教案(集合7篇)01-08

高一数学对数函数教案(集锦7篇)01-10

高一数学对数函数教案(通用7篇)01-09

高一数学对数函数教案汇编7篇01-11