现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-21 00:32:58 八年级数学教案 我要投稿

关于八年级数学教案六篇

  在教学工作者开展教学活动前,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么你有了解过教案吗?以下是小编为大家收集的八年级数学教案6篇,希望对大家有所帮助。

关于八年级数学教案六篇

八年级数学教案 篇1

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的性质的理解和拓展运用。

  学习过程 :

  一、探索活动

  如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

  两针孔A、A和线段AA与折痕MN之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

  2、那么 直线MN为什么会垂直平分线段AA呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

  例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.

  4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

  5.如图,再在纸上任画一点C,并仿照上面进行操作.

  (1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

  (2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的.两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

  (2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.

  (3)AE与BF平行吗?为什么?

  (4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

  (5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

八年级数学教案 篇2

   一、学习目标及重、难点:

  1、了解方差的定义和计算公式。

  2、理解方差概念的产生和形成的过程。

  3、会用方差计算公式来比较两组数据的波动大小。

  重点:方差产生的必要性和应用方差公式解决实际问题。

  难点:理解方差公式

  二、自主学习:

  (一)知识我先懂:

  方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用

  来表示。

  给力小贴士:方差越小说明这组数据越 。波动性越 。

  (二)自主检测小练习:

  1、已知一组数据为2、0、-1、3、-4,则这组数据的'方差为 。

  2、甲、乙两组数据如下:

  甲组:10 9 11 8 12 13 10 7;

  乙组:7 8 9 10 11 12 11 12.

  分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

  三、新课讲解:

  引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )

  (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

  归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用 来表示。

  (一)例题讲解:

  例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

  测试次数 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志强 10 13 16 14 12

  给力提示:先求平均数,在利用公式求解方差。

  (二)小试身手

  1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定

  去参加比赛。

  1、求下列数据的众数:

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

  四、课堂小结

  方差公式:

  给力提示:方差越小说明这组数据越 。波动性越 。

  每课一首诗:求方差,有公式;先平均,再求差;

  求平方,再平均;所得数,是方差。

  五、课堂检测:

  1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题

  七、学习小札记:

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案 篇3

  学习目标

  1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

  2、由坐标的变化探索新旧图形之间的变化。

  重点

  1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

  2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

  难点

  体会极坐标和直角坐标思想,并能解决一些简单的问题

  学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

  第一课时

  学习过程:

  一、旧知回顾:

  1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

  2、坐标平面内点的坐标的表示方法____________。

  3、各象限点的`坐标的特征:

  二、新知检索:

  1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形

  三、典例分析

  例1、

  (1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

  例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

  四、题组训练

  1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

  (1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

  (2)纵、横分别加3呢?

  (3)纵、横分别变成原来的2倍呢?

  归纳:图形坐标变化规律

  1、 平移规律:2、图形伸长与压缩:

  第二课时

  一、旧知回顾:

  1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。

  中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

  二、新知检索:

  1、如图,左边的鱼与右边的鱼关于y轴对称。

  1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

  2、各个对应顶点的坐标有怎样的关系?

  3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

  三、典例分析,如图所示,

  1、右图的鱼是通过什么样的变换得到 左图的鱼的。

  2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

  3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

  四、题组练习

  1、将坐标作如下变化时,图形将怎样变化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

  3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

  4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。

  学习笔记

八年级数学教案 篇4

  一、学习目标:

  1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

  2、会运用两数差的平方公式进行计算。

  二、学习过程:

  请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

  (一)探索

  1、计算: (a - b) =

  方法一: 方法二:

  方法三:

  2、两数差的平方用式子表示为_________________________;

  用文字语言叙述为___________________________ 。

  3、两数差的平方公式结构特征是什么?

  (二)现学现用

  利用两数差的平方公式计算:

  1、(3 - a) 2、 (2a -1) 3、(3y-x)

  4、(2x – 4y) 5、( 3a - )

  (三)合作攻关

  灵活运用两数差的`平方公式计算:

  1、(999) 2、( a – b – c )

  3、(a + 1) -(a-1)

  (四)达标训练

  1、、选择:下列各式中,与(a - 2b) 一定相等的是( )

  A、a -2ab + 4b B、a -4b

  C、a +4b D、 a - 4ab +4b

  2、填空:

  (1)9x + + 16y = (4y - 3x )

  (2) ( ) = m - 8m + 16

  2、计算:

  ( a - b) ( x -2y )

  3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

  (四)提升

  1、本节课你学到了什么?

  2、已知a – b = 1,a + b = 25,求ab 的值

八年级数学教案 篇5

  教学内容和地位:

  众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

  本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

  认知目标:

  (1)使学生认知众数、中位数的意义;

  (2)会求一组数据的众数、中位数。

  能力目标:

  (1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

  (2)在问题解决的过程中,培养学生的自主学习能力;

  (3)在问题分析的过程中,培养学生的团结协作精神。

  情感目标:

  (1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

  (2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

  根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的`过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

八年级数学教案 篇6

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的.四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

八年级上册人教版数学教案02-27

八年级数学教案人教版01-03

八年级下册数学教案01-01

八年级的数学教案15篇12-14

八年级数学教案【荐】12-06

初中八年级数学教案11-03

人教版八年级数学教案11-04

【热门】八年级数学教案11-29