现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-22 02:26:11 八年级数学教案 我要投稿

精选八年级数学教案3篇

  作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?下面是小编为大家收集的八年级数学教案3篇,仅供参考,希望能够帮助到大家。

精选八年级数学教案3篇

八年级数学教案 篇1

  教学目标:

  1、掌握一次函数解析式的特点及意义

  2、知道一次函数与正比例函数的关系

  3、理解一次函数图象特点与解析式的联系规律

  教学重点:

  1、 一次函数解析式特点

  2、 一次函数图象特征与解析式的联系规律

  教学难点:

  1、一次函数与正比例函数关系

  2、根据已知信息写出一次函数的表达式。

  教学过程:

  Ⅰ.提出问题,创设情境

  问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

  分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

  s=570-95t.

  说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

  问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

  分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

  问题3 以上问题1和问题2表示的这两个函数有什么共同点?

  Ⅱ.导入新课

  上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

  y是x的正比例函数。

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

  (1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

  (2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

  (3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

  (4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

  (5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

  (6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

  (7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

  (2)L=2b+16,L是b的一次函数.

  (3)y=150-5x,y是x的一次函数.

  (4)s=40t,s既是t的一次函数又是正比例函数.

  (5)y=60x,y是x的一次函数,也是x的正比例函数;

  (6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

  (7)y=50+2x,y是x的一次函数,但不是x的正比例函数

  例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

  分析 根据一次函数和正比例函数的定义,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

  例4 已知y与x-3成正比例,当x=4时,y=3.

  (1)写出y与x之间的函数关系式;

  (2)y与x之间是什么函数关系;

  (3)求x=2.5时,y的值.

  解 (1)因为 y与x-3成正比例,所以y=k(x-3).

  又因为x=4时,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函数.

  (3)当x=2.5时,y=3×2.5=7.5.

  1. 2

  例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

  (1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

  (2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

  分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

  (2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的'x取值范围.

  分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

  解 在第一阶段:y=3x(0≤x≤8);

  在第二阶段:y=16+x(8≤x≤16);

  在第三阶段:y=-2x+88(24≤x≤44).

  Ⅲ.随堂练习

  根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

  2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

  超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

  Ⅳ.课时小结

  1、一次函数、正比例函数的概念及关系。

  2、能根据已知简单信息,写出一次函数的表达式。

  Ⅴ.课后作业

  1、已知y-3与x成正比例,且x=2时,y=7

  (1)写出y与x之间的函数关系.

  (2)y与x之间是什么函数关系.

  (3)计算y=-4时x的值.

  2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

  3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

  4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

  5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

八年级数学教案 篇2

  知识要点

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,

  相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。

  2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.

  3、正比例函数y=kx的性质

  (1)、正比例函数y=kx的图象都经过

  原点(0,0),(1,k)两点的一条直线;

  (2)、当k0时,图象都经过一、三象限;

  当k0时,图象都经过二、四象限

  (3)、当k0时,y随x的增大而增大;

  当k0时,y随x的增大而减小。

  4、一次函数y=kx+b的性质

  (1)、经过特殊点:与x轴的交点坐标是 ,

  与y轴的交点坐标是 .

  (2)、当k0时,y随x的增大而增大

  当k0时,y随x的增大而减小

  (3)、k值相同,图象是互相平行

  (4)、b值相同,图象相交于同一点(0,b)

  (5)、影响图象的两个因素是k和b

  ①k的正负决定直线的方向

  ②b的正负决定y轴交点在原点上方或下方

  5.五种类型一次函数解析式的确定

  确定一次函数的解析式,是一次函数学习的重要内容。

  (1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式

  例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

  解:把点(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函数的解析式为:y=3x-12

  (2)、根据直线经过两个点的坐标,确定函数的解析式

  例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),

  求函数的表达式。

  解:把点A(3,4)、点B(2,7)代入y=kx+b,得

  ,解得:

  函数的解析式为:y=-3x+13

  (3)、根据函数的图像,确定函数的解析式

  例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x

  (小时)之间的关系.求油箱里所剩油y(升)与行驶时间x

  (小时)之间的函数关系式,并且确定自变量x的取值范围。

  (4)、根据平移规律,确定函数的解析式

  例4、如图2,将直线 向上平移1个单位,得到一个一次

  函数的图像,那么这个一次函数的解析式是 .

  解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位

  后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,

  得 ,解得: ,函数的解析式为:y=2x+1

  (5)、根据直线的对称性,确定函数的解析式

  例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。

  例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。

  例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。

  经典训练:

  训练1:

  1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。

  (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?

  (2)若y是x的函数,试写出y与x之间的函数关系式 。

  训练2:

  1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函数有___ __;正比例函数有____________(填序号).

  2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )

  A.k1 B.k-1 C.k1 D.k为任意实数.

  3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.

  训练3:

  1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.

  2. 一次函数y=mx+n的图象如图,则下面正确的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.

  4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;

  若y随x的增大而增大,则k__________.

  5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  训练4:

  1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。

  4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  5、已知y-1与x成正比例,且 x=-2时,y=-4.

  (1)求出y与x之间的函数关系式;

  (2)当x=3时,求y的值.

  一、填空题(每题2分,共26分)

  1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .

  2、若直线 和直线 的交点坐标为 ,则 .

  3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .

  4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .

  5、函数 ,如果 ,那么 的取值范围是 .

  6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.

  7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .

  8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .

  9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .

  10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .

  11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.

  12、 为 时,直线 与直线 的交点在 轴上.

  13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .

  二、选择题(每题3分,共36分)

  14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )

  15、若直线 与 的.交点在 轴上,那么 等于( )

  A.4 B.-4 C. D.

  16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )

  17、直线 如图5,则下列条件正确的是( )

  18、直线 经过点 , ,则必有( )

  A.

  19、如果 , ,则直线 不通过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是

  A. B. C. D.都不对

  21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )

  图6

  22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )

  A.4 B.5 C.6 D.7

  23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )

  A.1个 B.2个 C.3个 D.4个

  24、已知 ,那么 的图象一定不经过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )

  三、解答题(1~6题每题8分,7题10分,共58分)

  26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.

  27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?

  28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

  (1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.

  (2)在同一坐标系中,画出这三个函数的图象.

  29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

  (1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.

  (2)小王家第一季度交纳电费情况如下:

  月份 一月份 二月份 三月份 合计

  交费金额 76元 63元 45元6角 184元6角

  问小王家第一季度共用电多少度?

  30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.

  (1)求 与 之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]

  31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?

  32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)

  路程/千米 运费(元/吨、千米)

  甲库 乙库 甲库 乙库

  A地 20 15 12 12

  B地 25 20 10 8

  (1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).

  (2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?

八年级数学教案 篇3

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的'关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

初中八年级数学教案11-03

八年级的数学教案15篇12-14

【热门】八年级数学教案11-29

八年级数学教案【热】11-29

八年级数学教案【荐】12-06

【热】八年级数学教案12-07

八年级上册数学教案11-09

人教版八年级数学教案11-04