有关八年级数学教案合集6篇
作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。写教案需要注意哪些格式呢?以下是小编收集整理的八年级数学教案6篇,仅供参考,欢迎大家阅读。
八年级数学教案 篇1
学习目标:
1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.
2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.
3、利用轴对称的基本性质解决实际问题。
学习重点:灵活运用对应点所连的`线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。
学习难点:轴对称的性质的理解和拓展运用。
学习过程 :
一、探索活动
如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.
两针孔A、A和线段AA与折痕MN之间有什么关系?
1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.
2、那么 直线MN为什么会垂直平分线段AA呢?
3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).
例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.
4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?
5.如图,再在纸上任画一点C,并仿照上面进行操作.
(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?
(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?
(3)轴对称有哪些性质?
6.轴对称的性质:
(1)成轴对称的两个图形全等.
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.
二、例题讲解
例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .
(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.
(3)AE与BF平行吗?为什么?
(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?
(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?
八年级数学教案 篇2
一、教学目标
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
设计意图:
如果说学生对因式分解还相当陌生的'话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根据上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
八年级数学教案 篇3
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的'兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法(图2)
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
八年级数学教案 篇4
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的'折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案 篇5
学习目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。
2、由坐标的变化探索新旧图形之间的变化。
重点
1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点
体会极坐标和直角坐标思想,并能解决一些简单的问题
学习过程(导入、探究新知、即时练习、小结、达标检测、作业)
第一课时
学习过程:
一、旧知回顾:
1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。
2、坐标平面内点的坐标的表示方法____________。
3、各象限点的坐标的特征:
二、新知检索:
1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形
三、典例分析
例1、
(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的.2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?
四、题组训练
1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。
(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?
(2)纵、横分别加3呢?
(3)纵、横分别变成原来的2倍呢?
归纳:图形坐标变化规律
1、 平移规律:2、图形伸长与压缩:
第二课时
一、旧知回顾:
1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。
中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形
二、新知检索:
1、如图,左边的鱼与右边的鱼关于y轴对称。
1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?
2、各个对应顶点的坐标有怎样的关系?
3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?
三、典例分析,如图所示,
1、右图的鱼是通过什么样的变换得到 左图的鱼的。
2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。
3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系
四、题组练习
1、将坐标作如下变化时,图形将怎样变化?
① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。
3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。
4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。
学习笔记
八年级数学教案 篇6
目标设计
一、情境设计
⒈对教材所给情境作适当解释;
⒉补充适量其它情境,有利于直及主题或拓展引申.
二、活动设计
⒈概念的形成过程;
⒉法则、定理的推导过程;
⒊方法的提炼与思想形成过程;
⒋问题串剖析过程(对概念的深化与挖掘).
三、例题设计
⒈教材例题分析;(解题格式、要点示范)
⒉形成性例题训练;(思想方法的应用示范)(3题左右)
⒊巩固性考题剖析.(2题左右)
四、拓展设计(2题左右)
⒈综合性训练;
⒉引申性、探究性、创新性活动;
⒊奥数问题点击.(不一定非得设计)
五、教学反思
六、检测设计(时间30分钟,得分集中于85/70分左右)
⒈难度与例题设计、拓展设计相当,个性化的'题型要在例题中出现过;
⒉8k纸,正面为例题回眸,内容为课堂所讲解的所有例题题目,根据题型留适量的空白(主要供学生课后复习和考前复习用,任何教师一律不得要求学生完成解答过程,违者按教学违规论处);反面为作业纸,只留标题栏,取消边框.(凸显分层)
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级数学教案06-18
八年级数学教案【热门】12-03
【精】八年级数学教案12-04
八年级数学教案【精】12-04
八年级数学教案【荐】12-06
【推荐】八年级数学教案12-05
八年级数学教案【推荐】12-04
【热】八年级数学教案12-07
八年级下册数学教案01-01