现在位置:范文先生网>教案大全>数学教案>六年级数学教案>人教版六年级下册数学教案

人教版六年级下册数学教案

时间:2022-08-22 21:52:27 六年级数学教案 我要投稿

人教版六年级下册数学教案范文汇总7篇

  在教学工作者开展教学活动前,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写才好呢?下面是小编为大家整理的人教版六年级下册数学教案7篇,欢迎大家分享。

人教版六年级下册数学教案范文汇总7篇

人教版六年级下册数学教案 篇1

  教学内容:

  人教版小学数学教材六年级下册第96~97页例1及相关练习。

  教学目标:

  1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

  2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

  教学重点:

  看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

  教学难点:

  根据统计图进行简单的数据分析。

  教学准备:

  课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

  教学过程:

  一、创设情境,谈话激趣

  1.出示教材第96页情境图,说说同学们正在干什么?

  2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

  喜欢的项目

  乒乓球

  足球

  跳绳

  踢毽

  其他

  人数

  【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的.兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

  二、整理数据,引入新课

  1.通过这张统计表,我们可以得到什么信息?

  预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

  2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

  3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

  4.学生进行口算或笔算,完成统计表,并进行校对。

人教版六年级下册数学教案 篇2

  (1)两个质数的和是39,这两个质数的积是( )。

  分析 本题考查的是质数的意义及数的奇偶性等知识。

  两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

  解答 74

  (2)120的因数有( )个。

  分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

  解答 16

  ⊙探究活动

  1.课件出示题目。

  (1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

  (2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?

  2.明确探究要求。(小组合作、思考、交流)

  (1)这两道题分别考查什么知识?

  (2)怎样解决这两个问题?

  (3)具体的解答过程是怎样的?

  3.汇报。

  (1)先汇报前两个问题。

  预设

  生1:第(1)题考查的是应用因数的知识解决问题的能力。

  生2:第(2)题考查的是应用倍数的知识解决问题的能力。

  生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的.最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。

  生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。

  (2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)

  (3)汇报解答过程。(指名板演,集体订正)

  预设

  生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。

  生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。

  4.小结。

  解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。

  ⊙课堂总结

  通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。

  ⊙布置作业

  教材75页5、9题。

  板书设计

  因数、倍数、质数、合数

  因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。

人教版六年级下册数学教案 篇3

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的`体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇4

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的.4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案 篇5

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.呈现例4中长方体、正方体和圆柱的直观图。

  2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1.观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2.实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的'拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3.推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1.做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2.做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

人教版六年级下册数学教案 篇6

  教学内容:

  九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

  教学目标:

  1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

  2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

  3、引导学生探索和解决问题,体验转化及极限的思想方法。

  教学重点:圆柱体体积的计算.

  教学难点:理解圆柱体体积公式的推导过程.

  教具:多媒体课件、圆柱形容器、水、橡皮泥。

  教学过程:

  一、激凝导入

  师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

  (2)生回答。

  2、出示橡皮泥捏成的圆柱体。

  那你有办法求出这个圆柱体橡皮泥的体积吗?

  生(热情的):老师将它捏成长方体或正方体就可以了!

  3、创设问题情境。

  师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

  那怎么办?

  学生试说出自己的办法。

  师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验、探究新知

  1、推导圆柱的体积公式。

  师:你们打算怎么去研究圆柱的体积?

  小组同学讨论研究的方法。

  2、学生动手操作感知

  (1)学生以小组为单位操作体验。(操作学具,进行拼组)。

  (2)学生小组汇报交流:

  近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的'高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

  (3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

  3、教师课件演示圆柱转化成长方体的过程。

  4、师生共同推导出圆柱的体积公式:

  长方体的体积=底面积高

  圆柱的体积=底圆柱面积高

  V = Sh

  5、巩固公式

  ①V、S、h各表示什么?

  ②知道哪些条件就可以求圆柱的体积?

  а、知道底面积和高可以直接用公式计算圆柱的体积;

  b、知道底面半径和高,可以先计算出底面积,再计算体积;

  c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

  学生回答后师板书。

  6、教学例4、例5。

  课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

  三、实践练习

  1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

  2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

  同学们,你们知道小林是怎样想的吗?

  四、课堂总结;

  通过本节课的学习,你有什么收获?

人教版六年级下册数学教案 篇7

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)

  ⊙回顾与整理

  1.小数的意义。

  过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?

  预设

  生1:半个可以用0.5来表示,一米半可以用1.5来表示。

  生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

  2.小数的.数位顺序表。

  师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

  (课件出示数位顺序表,小数部分留白。指名回答,师填充)

  3.小数的读法和写法。

  (1)师:怎样读小数?怎样写小数?

  预设

  生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。

  生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

  (2)写小数时需要注意什么?

  (空位用“0”补足)

  4.小数的分类。

  (1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

  预设

  生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

  (2)谁能举例说明什么是有限小数?什么是无限小数?

  预设

  生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。

  生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。

  (3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

  预设

  生:无限小数可以分为无限不循环小数和循环小数。

  (4)关于无限不循环小数和循环小数,你都了解哪些知识?

  预设

  生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π

  生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…

  生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

  例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。

  5.小数的性质。

  (1)师:谁能说说小数有怎样的性质?

  预设

  生:在小数的末尾添上0或者去掉0,小数的大小不变。

  (2)理解小数的性质时,应该注意什么?

  (提示:要注意是“小数的末尾”,而不是“小数点的后面”)

  6.小数点位置的变化。

【人教版六年级下册数学教案】相关文章:

人教版六年级下册数学教案03-14

人教版六年级下册数学教案06-17

人教版六年级下册数学教案06-30

人教版六年级下册数学教案(通用)08-26

人教版六年级下册数学教案6篇11-18

人教版六年级下册数学教案5篇01-11

人教版六年级下册数学教案(5篇)01-11

人教版六年级下册数学教案7篇11-19

人教版六年级下册数学教案8篇01-13

人教版六年级下册数学教案(8篇)01-13