现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-22 21:17:09 八年级数学教案 我要投稿

关于八年级数学教案合集五篇

  作为一名教职工,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?下面是小编收集整理的八年级数学教案5篇,欢迎阅读,希望大家能够喜欢。

关于八年级数学教案合集五篇

八年级数学教案 篇1

  课时目标

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意义、分式的值是否等于零的识别方法。

  教学重点

  正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

  教学难点:

  正确理解分式的意义,分式是否有意义的条件及分式的值为零的'条件。

  教学时间:一课时。

  教学用具:投影仪等。

  教学过程:

  一.复习提问

  1.什么是整式?什么是单项式?什么是多项式?

  2.判断下列各式中,哪些是整式?哪些不是整式?

  ①+m2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新课讲解:

  设问:不是整工式子中,和整式有什么区别?

  小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。

  练习:下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  强调:(6)+4带有是无理式,不是整式,故不是分式。

  2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

  练习:课后练习P6练习1、2题

  设问:(让学生看课本上P5“思考”部分,然后回答问题。)

  例题讲解:课本P5例题1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。

  (板书解题过程。)

  3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。

  增加例题:当x取什么值时,分式有意义?

  解:由分母x2-4=0,得x=±2。

  ∴ 当x≠±2时,分式有意义。

  设问:什么时候分式的值为零呢?

  例:

  解:当 ① 分式的值为零

八年级数学教案 篇2

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的'加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

八年级数学教案 篇3

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题.

  问题1如图是某地一天内的气温变化图.

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃.最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

  解随着存期x的增长,相应的年利率y也随着增长.

  问题3收音机刻度盘的`波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________.

  解(1)l与f的乘积是一个定值,即

  lf=300000,

  或者说.

  (2)波长l越大,频率f就 越小 .

  问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________.

  解S=πr2.

  圆的半径越大,它的面积就越大.

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学教案 篇4

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的.辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

八年级数学教案 篇5

  一、教学目标:

  1、会根据频数分布表求加权平均数,从而解决一些实际问题

  2、会用计算器求加权平均数的值

  3、会运用样本估计总体的方法来获得对总体的认识

  二、重点、难点:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  三、教学过程:

  1、复习

  组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.

  因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.

  2、教材P140探究栏目的意图

  ①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.

  ②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的'轻重程度,即权.

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.

  3、教材P140的思考的意图.

  ①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.

  ②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.

  4、利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.

  5、运用样本估计总体

  要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

八年级上册数学教案11-09

人教版八年级数学教案11-04

【热门】八年级数学教案11-29

【热】八年级数学教案12-07

八年级数学教案【荐】12-06

【推荐】八年级数学教案12-05

【荐】八年级数学教案12-03

八年级数学教案【热门】12-03