现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-23 02:39:48 八年级数学教案 我要投稿

有关八年级数学教案模板八篇

  作为一名老师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编为大家收集的八年级数学教案8篇,仅供参考,欢迎大家阅读。

有关八年级数学教案模板八篇

八年级数学教案 篇1

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的`概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案 篇2

  教学目标

  一、教学知识点:

  1.旋转的定义.2.旋转的基本性质.

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义.

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

  教学重点:旋转的基本性质.

  教学难点:探索旋转的基本性质.

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一.巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的.

  2.每个物体的转动都是向同一个方向转动.

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

  二.讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

  议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的.距离相等.

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

  解:(见课本68页)

  书上68页做一做

  三.课堂练习

  课本P69随堂练习.

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

  四.课时小结

  五.课后作业:课本P69习题3.4 1、2、3.

  六.活动与探究

  1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

  2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

  板书设计:

  教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

八年级数学教案 篇3

  一、课堂引入

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

  通过讨论得到矩形的判定方法.

  矩形判定方法1:对角钱相等的平行四边形是矩形.

  矩形判定方法2:有三个角是直角的四边形是矩形.

  (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

  二、例习题分析

  例1(补充)下列各句判定矩形的说法是否正确?为什么?

  (1)有一个角是直角的四边形是矩形;(×)

  (2)有四个角是直角的四边形是矩形;(√)

  (3)四个角都相等的四边形是矩形;(√)

  (4)对角线相等的四边形是矩形;(×)

  (5)对角线相等且互相垂直的四边形是矩形;(×)

  (6)对角线互相平分且相等的'四边形是矩形;(√)

  (7)对角线相等,且有一个角是直角的四边形是矩形;(×)

  (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

  (9)两组对边分别平行,且对角线相等的四边形是矩形.(√)

  指出:

  (l)所给四边形添加的条件不满足三个的肯定不是矩形;

  (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

  例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.

  分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

  解:∵ 四边形ABCD是平行四边形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(对角线相等的平行四边形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

  分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明

八年级数学教案 篇4

  目标设计

  一、情境设计

  ⒈对教材所给情境作适当解释;

  ⒉补充适量其它情境,有利于直及主题或拓展引申.

  二、活动设计

  ⒈概念的形成过程;

  ⒉法则、定理的`推导过程;

  ⒊方法的提炼与思想形成过程;

  ⒋问题串剖析过程(对概念的深化与挖掘).

  三、例题设计

  ⒈教材例题分析;(解题格式、要点示范)

  ⒉形成性例题训练;(思想方法的应用示范)(3题左右)

  ⒊巩固性考题剖析.(2题左右)

  四、拓展设计(2题左右)

  ⒈综合性训练;

  ⒉引申性、探究性、创新性活动;

  ⒊奥数问题点击.(不一定非得设计)

  五、教学反思

  六、检测设计(时间30分钟,得分集中于85/70分左右)

  ⒈难度与例题设计、拓展设计相当,个性化的题型要在例题中出现过;

  ⒉8k纸,正面为例题回眸,内容为课堂所讲解的所有例题题目,根据题型留适量的空白(主要供学生课后复习和考前复习用,任何教师一律不得要求学生完成解答过程,违者按教学违规论处);反面为作业纸,只留标题栏,取消边框.(凸显分层)

八年级数学教案 篇5

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的'两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

八年级数学教案 篇6

  教学目标:

  1。经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2。索并掌握平行四边形的性质,并能简单应用;

  3。在探索活动过程中发展学生的探究意识。

  教学重点:平行四边形性质的探索。

  教学难点:平行四边形性质的理解。

  教学准备:多媒体课件

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1。小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2。小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的`对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转 、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践 探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵ 四边形ABCD是平行四边形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1。活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1 如图:四边形ABCD是平行四边形。

  (1)求ADC、BCD度数

  (2)边AB、BC的度数、长度。

  练2 四边形ABCD是平行四边形

  (1)它的四条边中哪些 线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归 纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1。 ABCD中,B=60,则A= ,C= ,D= 。

  2。 ABCD中,A比B大20,则C= 。

  3。 ABCD中,AB=3,BC=5,则AD= CD= 。

  4。 ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。

  布置作业

  课本习题4。1

  A组(学优生)1 、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

  教学反思

八年级数学教案 篇7

  一、学习目标:

  1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

  2、会运用两数差的平方公式进行计算。

  二、学习过程:

  请同学们快速阅读课本第27—28页的内容,并完成下面的`练习题:

  (一)探索

  1、计算: (a - b) =

  方法一: 方法二:

  方法三:

  2、两数差的平方用式子表示为_________________________;

  用文字语言叙述为___________________________ 。

  3、两数差的平方公式结构特征是什么?

  (二)现学现用

  利用两数差的平方公式计算:

  1、(3 - a) 2、 (2a -1) 3、(3y-x)

  4、(2x – 4y) 5、( 3a - )

  (三)合作攻关

  灵活运用两数差的平方公式计算:

  1、(999) 2、( a – b – c )

  3、(a + 1) -(a-1)

  (四)达标训练

  1、、选择:下列各式中,与(a - 2b) 一定相等的是( )

  A、a -2ab + 4b B、a -4b

  C、a +4b D、 a - 4ab +4b

  2、填空:

  (1)9x + + 16y = (4y - 3x )

  (2) ( ) = m - 8m + 16

  2、计算:

  ( a - b) ( x -2y )

  3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

  (四)提升

  1、本节课你学到了什么?

  2、已知a – b = 1,a + b = 25,求ab 的值

八年级数学教案 篇8

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的.性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的性质的理解和拓展运用。

  学习过程 :

  一、探索活动

  如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

  两针孔A、A和线段AA与折痕MN之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

  2、那么 直线MN为什么会垂直平分线段AA呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

  例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.

  4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

  5.如图,再在纸上任画一点C,并仿照上面进行操作.

  (1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

  (2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

  (2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.

  (3)AE与BF平行吗?为什么?

  (4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

  (5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

初中八年级数学教案11-03

八年级的数学教案15篇12-14

【热门】八年级数学教案11-29

八年级数学教案【热】11-29

八年级数学教案【荐】12-06

【热】八年级数学教案12-07

八年级上册数学教案11-09

人教版八年级数学教案11-04