八年级数学教案模板汇总十篇
作为一名无私奉献的老师,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的八年级数学教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学教案 篇1
目标设计
一、情境设计
⒈对教材所给情境作适当解释;
⒉补充适量其它情境,有利于直及主题或拓展引申.
二、活动设计
⒈概念的形成过程;
⒉法则、定理的推导过程;
⒊方法的提炼与思想形成过程;
⒋问题串剖析过程(对概念的深化与挖掘).
三、例题设计
⒈教材例题分析;(解题格式、要点示范)
⒉形成性例题训练;(思想方法的应用示范)(3题左右)
⒊巩固性考题剖析.(2题左右)
四、拓展设计(2题左右)
⒈综合性训练;
⒉引申性、探究性、创新性活动;
⒊奥数问题点击.(不一定非得设计)
五、教学反思
六、检测设计(时间30分钟,得分集中于85/70分左右)
⒈难度与例题设计、拓展设计相当,个性化的'题型要在例题中出现过;
⒉8k纸,正面为例题回眸,内容为课堂所讲解的所有例题题目,根据题型留适量的空白(主要供学生课后复习和考前复习用,任何教师一律不得要求学生完成解答过程,违者按教学违规论处);反面为作业纸,只留标题栏,取消边框.(凸显分层)
八年级数学教案 篇2
一、学生起点分析
通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.
二、教学任务分析
《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.
本节课的教学目标是:
①通过拼图活动,让学生感受客观世界中无理数的存在;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;
④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;
三、教学过程设计
本节课设计了6个教学环节:
第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.
效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.
效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?
【释一释】:释1.满足 的 为什么不是整数?
释2.满足 的 为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣
效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段
2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数
2.只有两边长是有理数
3.只有一边长是有理数
4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足 的
解: (右2)
仿:在数轴上表示满足 的
【赛一赛】:右3是由五个单位正方形组成的'纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上
效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容:
1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
六、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
八年级数学教案 篇3
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
八年级数学上册教案四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
教师活动
学生活动
设计意图
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的`平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
(演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
(演示课件)教材65页“随堂练习”。
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
八年级数学教案 篇4
教学目标:
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件
教学过程:
一、 先复习轴对称图形的定义,以及轴对称的相关的.性质:
1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________
2.轴对称的三个重要性质______________________________________________
_____________________________________________________________________
二、提出问题:
二、探索练习:
1. 提出问题:
如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?
吸引学生让学生有一种解决难点的想法。
2.分析问题:
分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可
问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`
在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:
1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
2. 试画出与线段AB关于直线L的线段
3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形
小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。
教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高
八年级数学教案 篇5
教学任务分析
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.
解决问题
一、会进行同分母和异分母分式的加减运算.
二、会解决与分式的加减有关的简单实际问题.
三、能进行分式的加、剪、乘、除、乘方的混合运算.
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.
重点
分式的加减法.
难点
异分母分式的加减法及简单的分式混合运算.
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的.学习热情.
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.
通过练习、作业进一步巩固分式的运算.
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间.
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的加减,提出本节课的主题.
教师通过课件展示问题.学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.
[活动2]
1.提出小学数学中一道简单的分数加法题目.
2.用课件引导学生用类比法,归纳总结同分母分式加法法则.
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习.
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.
学生在教师的引导下,探索同分母分式加减的运算方法.
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.
由两个学生板书自主完成练习,教师巡视指导学生练习.
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.
让学生进一步体会同分母分式的加减运算.
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习.
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式.
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.
让学生体会运用的公式解决问题的过程.
锻炼学生运用法则解决问题的能力,既准确又有速度.
提高学生的计算能力.
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.
提高学生综合应用知识的能力.
[活动5]
1.教师通过课件出2个分式混合运算的小练习.
2.总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简.
3.作业:
a)教科书习题16.2第4、5、6题.
学生练习、巩固.
教师巡视指导.
学生完成、交流.,师生评价.
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.
教师布置作业.
锻炼学生运用法则进行运算的能力,提高准确性及速度.
提高学生归纳总结的能力.
八年级数学教案 篇6
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的.可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 150 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
八年级数学教案 篇7
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的.高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案 篇8
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的`形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
八年级数学教案 篇9
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1 矩形的四个角都是直角.
矩形性质2 矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.
例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等边三角形.
∴矩形的.对角线长AC=BD=2OA=2×4=8(cm).
例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法
八年级数学教案 篇10
教学任务分析
教学目标
知识技能
探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.
数学思考
能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.
解决问题
通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
情感态度
在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.
重点
等腰梯形的性质及其应用.
难点
解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.
教学流程安排
活动流程图
活动的内容和目的
活动1想一想
活动2说一说
活动3画一画
活动4做—做
活动5练一练
活动6理一理
观察梯形图片,引入本节课的.学习内容.
了解梯形定义、各部分名称及分类.
通过画图活动,初步发现梯形与三角形的转化关系.
探究得到等腰梯形的性质.
通过解决具体问题,寻找解决梯形问题的方法.
通过整理回顾,巩固知识、提高能力、渗透思想.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
观察下图中,有你熟悉的图形吗?它们有什么共同的特点?
演示图片,学生欣赏.
结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.
由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.
[活动2]
梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.
学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.
通过类比,培养学生归纳、总结的能力.
问题与情景
师生行为
设计意图
一些基本概念
(1)(如图):底、腰、高.
(2)等腰梯形:两腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一个角是直角的梯形叫做直角梯形.
学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;
②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.
熟悉图形,明确概念,为探究图形性质做准备.
[活动3]
画一画
在下列所给图中的每个三角形中画一条线段,
(1)怎样画才能得到一个梯形?
(2)在哪些三角形中,能够得到一个等腰梯形?
在学生独立探究的基础上,学生分组交流.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.
本次活动教师应重点关注:
(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.
(2)学生能否将等腰三角形转化为等腰梯形.
(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.
等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.
问题与情景
师生行为
设计意图
[活动4]
做—做
探索等腰梯形的性质(引入用轴对称解决问题的思想).
在一张方格纸上作一个等腰梯形,连接两条对角线.
(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;
(2)这个等腰梯形的两条对角线的长度有什么关系?
学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.
针对不同认识水平的学生,教师指导学生活动.
师生共同归纳:
①等腰梯形是轴对称图形,上下底的中点连线是对称轴.
②等腰梯形两腰相等.
③等腰梯形同一底上的两个角相等.
④等腰梯形的两条对角线相等.
教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.
[活动5]
练—练
例1 (教材P118的例1)略.
例2 如图,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的长.
师生共同分析,寻找解决问题的方法和策略.
例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.
分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.
其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.
问题与情景
师生行为
设计意图
例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求证:BE=CD.
分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
证明(略)
例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.
[活动6]
1.小结
2.布置作业
(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.
(2)已知:如图,
梯形ABCD中,CD//AB,,.
求证:AD=AB—DC.
(3)已知,如图,
梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)
师生归纳总结:
解决梯形问题常用的方法:
(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);
(2)“作高”:使两腰在两个直角三角形中(图2);
(3)“延腰”:构造具有公共角的两个等腰三角形(图3);
(4)“平移对角线”:使两条对角线在同一个三角形中(图4);
(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).
尽量多地让学生参与发言是一个交流的过程.
梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.
学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级数学教案06-18
八年级数学教案【热门】12-03
【精】八年级数学教案12-04
八年级数学教案【精】12-04
八年级数学教案【荐】12-06
【推荐】八年级数学教案12-05
八年级数学教案【推荐】12-04
【热】八年级数学教案12-07
八年级下册数学教案01-01