现在位置:范文先生网>教案大全>数学教案>六年级数学教案>人教版六年级下册数学教案

人教版六年级下册数学教案

时间:2022-08-23 13:53:51 六年级数学教案 我要投稿

人教版六年级下册数学教案范文十篇

  作为一位兢兢业业的人民教师,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们该怎么去写教案呢?下面是小编精心整理的人教版六年级下册数学教案10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

人教版六年级下册数学教案范文十篇

人教版六年级下册数学教案 篇1

  第1课时

  圆柱的认识

  教学内容

  人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。

  内容简析

  圆柱的认识:通过观察物体的形状,初步认识圆柱。

  例1:通过观察圆柱,认识圆柱的侧面、底面和高。

  例2:通过观察图形,掌握圆柱的侧面展开图。

  教学目标

  1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。

  2.通过观察、发现、交流,让学生自主探究,掌握学习方法。

  3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。

  教学重难点

  重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的关系。

  难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。

  教法与学法

  1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。

  2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。

  承前启后链

  教学过程

  一、情景创设,导入课题

  实物展示法:

  教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)

  学生1:圆柱由三部分组成:两个圆和一个曲面。

  学生2:两个圆的面积相等。

  学生3:……

  教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】

  课件展示法:

  1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)

  我看到了旋转门,想到了它转起来会形成一个圆柱。

  2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。

  今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】

  动手操作法:

  让学生拿出所带的硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。

  小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】

  二、师生合作,探究新知

  ◎教学例1

  (1)整体感知圆柱

  ①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。

  ②找找圆柱,请同学找出生活中圆柱形状的物体。

  引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。

  (2)教学例1:

  出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。

  ①认识圆柱的面。

  师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。

  师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)

  ②认识圆柱的高

  引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)

  讨论交流:圆柱的高的特点。

  归纳小结并板书:圆柱的高有无数条,高的长度都相等。

  总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  【品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】

  ◎教学例2:圆柱的侧面展开

  (1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。

  反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

  (2)操作探究:展开的长方形的长和宽与圆柱的关系。

  师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  (3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。

  (4)引导学生自主阅读并观察教材第19页例2。

  总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  【品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的`活动体验,让学生经历学习数学的过程。】

  三、反馈质疑,学有所得

  在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。

  质疑一:圆柱是由几部分组成的?圆柱有什么特征?

  师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?

  师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  四、课末小结,融会贯通

  同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。

  师生共同总结:

  1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。

  2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:

  什么叫作圆柱的表面积?包括哪几个面?

  五、教海拾遗,反思提升

  回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。

  反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。

人教版六年级下册数学教案 篇2

  教学内容:

  九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

  教学目标:

  1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

  2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

  3、引导学生探索和解决问题,体验转化及极限的思想方法。

  教学重点:圆柱体体积的计算.

  教学难点:理解圆柱体体积公式的推导过程.

  教具:多媒体课件、圆柱形容器、水、橡皮泥。

  教学过程:

  一、激凝导入

  师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

  (2)生回答。

  2、出示橡皮泥捏成的圆柱体。

  那你有办法求出这个圆柱体橡皮泥的体积吗?

  生(热情的):老师将它捏成长方体或正方体就可以了!

  3、创设问题情境。

  师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

  那怎么办?

  学生试说出自己的办法。

  师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验、探究新知

  1、推导圆柱的体积公式。

  师:你们打算怎么去研究圆柱的体积?

  小组同学讨论研究的方法。

  2、学生动手操作感知

  (1)学生以小组为单位操作体验。(操作学具,进行拼组)。

  (2)学生小组汇报交流:

  近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的'高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

  (3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

  3、教师课件演示圆柱转化成长方体的过程。

  4、师生共同推导出圆柱的体积公式:

  长方体的体积=底面积高

  圆柱的体积=底圆柱面积高

  V = Sh

  5、巩固公式

  ①V、S、h各表示什么?

  ②知道哪些条件就可以求圆柱的体积?

  а、知道底面积和高可以直接用公式计算圆柱的体积;

  b、知道底面半径和高,可以先计算出底面积,再计算体积;

  c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

  学生回答后师板书。

  6、教学例4、例5。

  课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

  三、实践练习

  1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

  2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

  同学们,你们知道小林是怎样想的吗?

  四、课堂总结;

  通过本节课的学习,你有什么收获?

人教版六年级下册数学教案 篇3

  教材分析:

  本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

  学生分析:

  在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

  学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

  教学目标:

  1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、通过活动培养学生利用小组合作,探究解决问题的能力。

  3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

  教学重点:运用圆的有关知识计算。

  教学难点:

  结合具体问题,让学生独立思考,提高解决简单问题的能力。

  关键:体会数学知识在体育中的应用。

  教学过程:

  一、汇报调查,引入课题(8分钟)

  1、汇报调查情况

  课前,我让大家调查运动场的情况,你们得到了哪些信息?

  2、课件显示如下情境图:

  师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

  师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

  3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

  二、结合实例、探究问题(24分钟)

  实例一:

  课件显示:

  淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

  (1)笑笑所走路线的半径为10米,她走过的路程是()米。

  (2)淘气所走的路线半径为()米,他走过的路程为()米。

  (3)两人走过的路相差()米。

  1、理解题意

  根据这幅情境图,你能获得哪些信息?指名回答。

  2、小组讨论

  先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

  3、全班交流

  抽生汇报,教师板书。

  实例2:

  课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

  1、观察跑道由哪几部分组成?

  2、在跑道上跑一圈的长度可以看成是哪几部分的和?

  (板书:跑道一圈长度=圆周长+2个直道长度)

  (二)简化研究问题:

  1、85.96米是指哪部分的长度?一条直道吗?

  2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

  3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

  (三)寻求解决方法:

  1、左右两个半圆形的`弯道合起来是一个什么?

  2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

  3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

  (四)、动手解决问题:

  1、计算圆的周长要知道什么?(直径)

  2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

  3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

  引导学生将3.14159换成进行计算

  汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

  4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

  师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

  三、巩固练习、实践应用(3分钟)

  400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

  四、拓展延伸、自我评价(5分钟)

  1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

  2、课后自学课本第45页你知道吗?

  五、全课小结:

  谈一谈,这节课你有什么收获?

  六、布置作业

人教版六年级下册数学教案 篇4

  教材及学情简析:

  本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

  此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

  教学目标:

  1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

  2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

  3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

  教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

  教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

  教学准备:课件、圆柱体、长方体、正方体、剪刀等。

  教学过程:

  一、温故对比引圆柱

  1.出示圆。

  还记得圆是什么图形吗?(平面图形)

  2.出示柱。

  老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

  (由圆到圆柱,推想发现圆柱是立体图形。)

  3.想圆柱。

  相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

  (唤起学生对圆柱的已有经验。)

  4.摸圆柱。

  老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

  5.谈圆柱。

  在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

  6.引新课。

  看来这圆柱还真是与众不同,今天我们就来好好地认识它。

  【设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

  二、独立自主学圆柱

  1.认识圆柱的几何图形。

  (出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

  2.自学课本,认识圆柱各部分的名称。

  同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

  3.分享自学成果。

  4.加深理解,学生互相指一指圆柱的底面、侧面和高。

  我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

  【设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

  三、猜想验证探圆柱

  1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

  如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

  除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

  怎样剪才能得到长方形?

  (通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

  2.探索圆柱的侧面展开得到的长方形的.长和宽与圆柱的底面和高的关系。

  为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

  3.汇报并总结圆柱的侧面展开图的特征。

  小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

  4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

  ⑴ 根据圆柱的侧面选择合适的底面。

  ⑵ 根据圆柱的底面选择合适的侧面。

  【设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

  四、梳理新知用圆柱

  1.梳理新知。

  ⑴ 师导。

  同学们看,我们今天学到了关于圆柱的什么知识?

  ⑵ 生谈。

  请同学们当推销员介绍一下你所认识的圆柱

  2.运用新知。

  ⑴ 基本练习(以书面的形式出现)。

  ① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

  ② 圆柱有一个曲面叫做( )面。

  ③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

  ④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

  ⑵ 判断说明。

  判断下面的图形是不是圆柱,为什么?

  3.回归生活,发现圆柱。

  在生活中,你看见过哪些物体是圆柱形的?

  【设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

  五、欣赏了解悟圆柱

  1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

  圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

  2.介绍圆柱的高在生活中的其他叫法。

  (高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

  同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

  4.放大圆柱的内涵介绍可乐罐的奥秘。

  有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

  【设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

  六、学以致用做圆柱

  课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

  【设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

  板书设计:

  认识 圆柱

  2个底面:是完全相同的两个圆

  无数条高:两个底面之间的距离

  【设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

人教版六年级下册数学教案 篇5

  教学内容:

  人教版小学数学教材六年级下册第96~97页例1及相关练习。

  教学目标:

  1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

  2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

  教学重点:

  看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

  教学难点:

  根据统计图进行简单的数据分析。

  教学准备:

  课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

  教学过程:

  一、创设情境,谈话激趣

  1.出示教材第96页情境图,说说同学们正在干什么?

  2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

  喜欢的项目

  乒乓球

  足球

  跳绳

  踢毽

  其他

  人数

  【设计意图】联系学生生活实际,统计自己喜欢的.体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

  二、整理数据,引入新课

  1.通过这张统计表,我们可以得到什么信息?

  预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

  2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

  3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

  4.学生进行口算或笔算,完成统计表,并进行校对。

人教版六年级下册数学教案 篇6

  教学目标:

  1、学生通过小组合作学习对单元知识进行概括,建立知识结构;

  2、会解决实际问题;

  3、归纳整理的能力及解决问题的能力;

  4、积极探索、团结协作的精神,获得收获的成功感。

  教学重点:运用所学知识解决实际问题。、

  教学难点:归纳整理,形成知识脉络。

  教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。

  教学过程:

  一、引发矛盾,引入课题

  猜一猜:老师今年多少岁了?

  [投影]老师年龄数的十位上是最小的奇数型质数,个位上的数既不是质数也不是合数。你们说老师今年多少岁了?

  猜这个谜语,我们需要哪些数学知识呢?

  说得有理,我们学过有关数的知识很多,就像刚才我们在猜谜时就用到了数的整除中的一些知识。今天我们就一起来整理复习数的整除,板书:数的整除复习

  齐读课题,你想到什么?

  那好吧,我们就开始复习。

  二、梳理知识,形成脉络

  1、 集中呈现

  现在请大家以小组为学习单位,按照你们的想法,把学过的数

  的整除这部分知识整理在下发的纸上。(请大家认真讨论商量,并由组长记录)待会儿我们要比一比,看哪个小组整理的既完整,又科学合理。巡视

  2、 逐个梳理

  1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。

  2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)

  3)整理完善知识结构

  在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)

  组织学生汇报交流、讨论。

  提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)

  说得真好!这些知识之间是有密切联系的。

  对于今天整理出来的数的整除脉络图,大家有什么想法?

  通过整理,可以使这部分知识更加条理化、系统化。

  3、 自学课本,看一看还有什么不清楚的问题?

  三、应用、解决问题

  1、填空题

  在1----20的自然数中,有( )个奇数,有( )个偶数,有( )个质数,有( )个合数,奇数中的( )是合数,偶数中的( )是质数,既不是质数也不是合数的`数是( )。

  2、能同时被2、5、3整除的最小两位数是( ),最大三位数是( )。

  3、选择题

  (1)一个合数的约数有( )

  A) 1个 B) 2个 C) 3个 D) 4个

  (2)如果a 和 b 是互质数,那么它们的最小公倍数是( )

  A) a B) b C) a b D) 1

  4、判断题

  (1)整除一定是除尽,除尽不一定整除。 ( )

  (2)相邻的两个自然数一定互质。 ( )

  (3)所有偶数都是合数。 ( )

  (4)24分解质因数 24 = 22231 。 ( )

  (5)一个自然数的最大约数一定等于它的最小公倍数。 ( )

  5、把下面的数按照不同的标准分成两类,你能想到几种?

  2 15 8 17 20

  四、强化总结,拓展迁移

  今天我们共同上了一节数的整除的整理与复习课,通过这节课的学习,我觉得大家特别聪明、好学,老师很高兴与大家共同渡过了这美好的40分钟,而且我们已经是 多次合作,所以我想与大家做好朋友,你们愿意吗?

  老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?

  老师的手机号码是11位数字,每一位数字依次是:

  1)是质数也不是合数;

  2)最小奇数与最小质数的和;

  3)最小的自然数;

  4)质数中最小的两个数的和;

  5)既是质数,又是偶数;

  6)最小质数与最小合数的积;

  7)有约数2 和3 的一位数;

  8)自然数中最小的奇数;

  9)最大约数与最小倍数都是 7 的数;

  10)所有自然数的约数;

  11)最大的一位数 。

  同学们以后有事需要老师帮忙,随时call我。

  这节课上到这里可以吗?

人教版六年级下册数学教案 篇7

  教学内容:

  人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  教学目标:

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  教学重、难点:

  负数的意义。

  教学设备:班班通

  教学过程:

  一、谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  二、教学新知

  1.表示相反意义的量。

  (1)引入实例。

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。

  ① 六年级上学期转来6人,本学期转走6人。

  ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

  ④ 一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试。

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流。

  ……

  2.认识正、负数。

  (1)引入正、负数。

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试。

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识。

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ① 同桌交流。

  ② 全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”。

  (1)看一看、读一读。

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的'气温情况(出示)。

  哈尔滨: -15 ℃~-3 ℃

  北京: -5 ℃~5 ℃

  深圳: 12 ℃~23 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说。

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识。

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳。

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  (完善板书。)

  5.练一练。

  读一读,填一填。(练习一第1题。)

  6.出示课题。

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

  7.负数的历史。

  (1)介绍。

  其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):

  “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

  (2)交流。

  简单了解了负数的历史,你有什么感受?

  三、练习应用

  今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

  逐一出示:

  1.表示海拔高度。(“做一做”第2题。)

  通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

  2.表示温度。(练习一第2题。)

  月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

  3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

  4.表示时间。(练习一第3题。)

  5. “净含量:10±0.1g”表示什么意思?

  四、总结延伸

  1.学生交流收获。

  2.总结。

  简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

人教版六年级下册数学教案 篇8

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的`学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇9

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的.常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇10

  教学内容:

  抽取游戏

  教学目标:

  1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

  2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重点:

  抽取问题。

  教学难点:

  理解抽取问题的基本原理。

  教学过程:

  一、教学例

  盒子里有同样大小的红球和蓝球各4个。要想摸出的'球一定有2个同色的,最少要摸出几个球?

  1.猜一猜。

  让学生想一想,猜一猜至少要摸出几个球。

  2.实验活动。

  (1) 一次摸出2个球,有几种情况?

  结果:有可能摸出2个同色的球。

  (2) 一次摸3个球,有几种情况?

  结果:一定能摸出2个同色的球。

  3.发现规律。

  启发:摸出球的个数与颜色种数有什么关系?

  学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

  二、做一做

  第1题。

  (1) 独立思考,判断正误。

  (2) 同学交流,说明理由。

  第2题。

  (1) 说一说至少取几个,你怎么知道呢?

  (2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

  三、巩固练习

  完成课文练习十二第1、3题。

【人教版六年级下册数学教案】相关文章:

人教版六年级下册数学教案03-14

人教版六年级下册数学教案06-17

人教版六年级下册数学教案06-30

人教版六年级下册数学教案(通用)08-26

人教版六年级下册数学教案6篇11-18

人教版六年级下册数学教案5篇01-11

人教版六年级下册数学教案(5篇)01-11

人教版六年级下册数学教案7篇11-19

人教版六年级下册数学教案8篇01-13

人教版六年级下册数学教案(8篇)01-13