现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-24 07:41:07 八年级数学教案 我要投稿
  • 相关推荐

关于八年级数学教案集锦六篇

  作为一无名无私奉献的教育工作者,常常要写一份优秀的教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编整理的八年级数学教案6篇,希望对大家有所帮助。

关于八年级数学教案集锦六篇

八年级数学教案 篇1

  教学建议

  1、平行线等分线段定理

  定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

  注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

  定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

  2、平行线等分线段定理的推论

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

  推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

  记忆方法:“中点”+“平行”得“中点”。

  推论的用途:(1)平分已知线段;(2)证明线段的倍分。

  重难点分析

  本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

  本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

  教法建议

  平行线等分线段定理的引入

  生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

  ①从生活实例引入,如刻度尺、作业本、栅栏、等等;

  ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

  教学设计示例

  一、教学目标

  1、使学生掌握平行线等分线段定理及推论。

  2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

  3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

  4、通过本节学习,体会图形语言和符号语言的和谐美

  二、教法设计

  学生观察发现、讨论研究,教师引导分析

  三、重点、难点

  1、教学重点:平行线等分线段定理

  2、教学难点:平行线等分线段定理

  四、课时安排

  l课时

  五、教具学具

  计算机、投影仪、胶片、常用画图工具

  六、师生互动活动设计

  教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

  七、教学步骤

  【复习提问】

  1、什么叫平行线?平行线有什么性质。

  2、什么叫平行四边形?平行四边形有什么性质?

  【引入新课】

  由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?

  (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

  平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

  注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

  下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

  已知:如图,直线 , 。

  求证: 。

  分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。

  (引导学生找出另一种证法)

  分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的.知识即可证得 。

  证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

  引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

  再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。

  推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

  注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

  接下来讲如何利用平行线等分线段定理来任意等分一条线段。

  例 已知:如图,线段 。

  求作:线段 的五等分点。

  作法:①作射线 。

  ②在射线 上以任意长顺次截取 。

  ③连结 。

  ④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。

  、 、 、 就是所求的五等分点。

  (说明略,由学生口述即可)

  【总结、扩展】

  小结:

  (l)平行线等分线段定理及推论。

  (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

  (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

  (4)应用定理任意等分一条线段。

  八、布置作业

  教材P188中A组2、9

  九、板书设计

  十、随堂练习

  教材P182中1、2

八年级数学教案 篇2

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

  本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

  2、 教法建议

  本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生前面,学习过线段垂直平分线的'概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

  (2)采用“类比”的学习方法,获取逆定理

  线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

  (3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

八年级数学教案 篇3

  学习目标

  1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

  2、由坐标的变化探索新旧图形之间的变化。

  重点

  1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

  2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

  难点

  体会极坐标和直角坐标思想,并能解决一些简单的问题

  学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

  第一课时

  学习过程:

  一、旧知回顾:

  1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

  2、坐标平面内点的坐标的表示方法____________。

  3、各象限点的坐标的特征:

  二、新知检索:

  1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形

  三、典例分析

  例1、

  (1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

  例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

  (2)将鱼的`顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

  四、题组训练

  1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

  (1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

  (2)纵、横分别加3呢?

  (3)纵、横分别变成原来的2倍呢?

  归纳:图形坐标变化规律

  1、 平移规律:2、图形伸长与压缩:

  第二课时

  一、旧知回顾:

  1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。

  中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

  二、新知检索:

  1、如图,左边的鱼与右边的鱼关于y轴对称。

  1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

  2、各个对应顶点的坐标有怎样的关系?

  3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

  三、典例分析,如图所示,

  1、右图的鱼是通过什么样的变换得到 左图的鱼的。

  2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

  3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

  四、题组练习

  1、将坐标作如下变化时,图形将怎样变化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

  3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

  4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。

  学习笔记

八年级数学教案 篇4

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

  反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

  可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

  并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

  ● 知识与技能目标

  1.理解勾股定理逆定理的具体内容及勾股数的概念;

  2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

  ● 过程与方法目标

  1.经历一般规律的探索过程,发展学生的抽象思维能力;

  2.经历从实验到验证的过程,发展学生的数学归纳能力。

  ● 情感与态度目标

  1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2.在探索过程中体验成功的喜悦,树立学习的自信心。

  教学重点

  理解勾股定理逆定理的具体内容。

  三、教法学法

  1.教学方法:实验猜想归纳论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

  但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2.课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

  登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:1.直角三角形中,三边长度之间满足什么样的关系?

  2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的`基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

  1.这三组数都满足 吗?

  2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

  活动3:反思总结

  提问:

  1.同学们还能找出哪些勾股数呢?

  2.今天的结论与前面学习勾股定理有哪些异同呢?

  3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3.如图1:在 中, 于 , ,则 是( )

  A 等腰三角形 B 锐角三角形

  C 直角三角形 D 钝角三角形

  解答:C

  4.将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望远

  内容:

  1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船转弯后,是沿正西方向航行的。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

  图4 图5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

  2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

  2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

  4.注重对学习新知理解应用偏困难的学生的进一步关注。

  5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入 小试牛刀: 登高望远

八年级数学教案 篇5

  5 14.3.2.2 等边三角形(二)

  教学目标

  掌握等边三角形的性质和判定方法.

  培养分析问题、解决问题的能力.

  教学重点

  等边三角形的性质和判定方法.

  教学难点

  等边三角形性质的应用

  教学过程

  I创设情境,提出问题

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的`等边三角形的判断方法.

  II例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

  ①在边AB、AC上分别截取AD=AE.

  ②作∠ADE=60°,D、E分别在边AB、AC上.

  ③过边AB上D点作DE∥BC,交边AC于E点.

  2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  III课堂小结

  1、等腰三角形和性质

  2、等腰三角形的条件

  V布置作业

  1.教科书第147页练习1、2

  2.选做题:

  (1)教科书第150页习题14.3第ll题.

  (2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

  (3)《课堂感悟与探究》

  5

八年级数学教案 篇6

  知识技能

  1.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

  2.探究线段垂直平分线的性质。

  过程方法

  1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

  2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

  情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

  教学重点

  1.轴对称的性质。

  2.线段垂直平分线的性质。

  教学难点体验轴对称的特征。

  教学方法和手段多媒体教学

  过程教学内容

  引入中垂线概念

  引出图形对称的性质第一张幻灯片

  上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

  幻灯片二

  1、图中的对称点有哪些?

  2、点A和A的'连线与直线MN有什么样的关系?

  理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

  我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。