【必备】人教版六年级下册数学教案四篇
在教学工作者实际的教学活动中,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编收集整理的人教版六年级下册数学教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
人教版六年级下册数学教案 篇1
教学内容:
成数(课本第9页例2)
教学目标:
1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。
2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解成数的意义。
教学难点:
解决解答有关成数的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的`牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=( )%; 四成五=( )%; 七成二=( )%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350(1-25%)=262.5(万千瓦时)
或者引导学生列出
350-35025%=262.5(万千瓦时)
四、巩固练习
1、三成=( )%; 五成六=( )%; 八成三=( )%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?
(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
人教版六年级下册数学教案 篇2
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的`了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
人教版六年级下册数学教案 篇3
教学目标:
1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。
2、进一步理解等底等高的圆柱和圆锥之间的关系。
3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。
教学重难点:综合应用所学知识解决实际问题。
教学过程:
一、复习回顾
1、等底等高的圆柱与圆锥体积之间有怎样的关系?
2、圆锥的体积怎样计算?
二、基本练习
1、填空
(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。
(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的'高是9厘米,圆柱的高是()厘米。
(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
2、判断。
(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()
(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()
(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()
三、综合应用
1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?
2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?
第八课时教学反思
教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。
教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。
教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。
[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。
人教版六年级下册数学教案 篇4
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的'平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、 自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)
圆柱的侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积 = 圆柱的侧面积+底面积×2
=Ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。
【人教版六年级下册数学教案】相关文章:
人教版六年级下册数学教案06-30
人教版六年级下册数学教案06-17
人教版六年级下册数学教案03-14
人教版六年级下册数学教案(通用)08-26
人教版六年级下册数学教案 6篇05-14
关于人教版六年级下册数学教案范文09-02
人教版六年级下册数学教案7篇11-19
人教版六年级下册数学教案6篇11-18
人教版六年级下册数学教案5篇01-11
人教版六年级下册数学教案(5篇)01-11