现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-26 05:27:46 八年级数学教案 我要投稿

关于八年级数学教案模板合集七篇

  作为一名老师,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。如何把教案做到重点突出呢?下面是小编整理的八年级数学教案7篇,欢迎阅读,希望大家能够喜欢。

关于八年级数学教案模板合集七篇

八年级数学教案 篇1

  1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

  2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

  3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

  矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

  矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

  【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

  ①随着∠α的变化,两条对角线的长度分别是怎样变化的?

  ②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?

  操作,思考、交流、归纳后得到矩形的性质.

  矩形性质1 矩形的四个角都是直角.

  矩形性质2 矩形的对角线相等.

  如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.

  例习题分析

  例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

  分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

  解:∵ 四边形ABCD是矩形,

  ∴ AC与BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等边三角形.

  ∴矩形的对角线长AC=BD=2OA=2×4=8(cm).

  例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的`长及点A到BD的距离AE的长.

  分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法

八年级数学教案 篇2

  教学任务分析

  教学目标

  知识技能

  探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

  数学思考

  能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

  解决问题

  通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

  情感态度

  在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.

  重点

  等腰梯形的性质及其应用.

  难点

  解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

  教学流程安排

  活动流程图

  活动的内容和目的

  活动1想一想

  活动2说一说

  活动3画一画

  活动4做—做

  活动5练一练

  活动6理一理

  观察梯形图片,引入本节课的学习内容.

  了解梯形定义、各部分名称及分类.

  通过画图活动,初步发现梯形与三角形的转化关系.

  探究得到等腰梯形的性质.

  通过解决具体问题,寻找解决梯形问题的方法.

  通过整理回顾,巩固知识、提高能力、渗透思想.

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1]

  观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

  演示图片,学生欣赏.

  结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

  由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

  [活动2]

  梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.

  学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

  通过类比,培养学生归纳、总结的能力.

  问题与情景

  师生行为

  设计意图

  一些基本概念

  (1)(如图):底、腰、高.

  (2)等腰梯形:两腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一个角是直角的梯形叫做直角梯形.

  学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;

  ②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

  熟悉图形,明确概念,为探究图形性质做准备.

  [活动3]

  画一画

  在下列所给图中的每个三角形中画一条线段,

  (1)怎样画才能得到一个梯形?

  (2)在哪些三角形中,能够得到一个等腰梯形?

  在学生独立探究的基础上,学生分组交流.

  教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

  本次活动教师应重点关注:

  (1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

  (2)学生能否将等腰三角形转化为等腰梯形.

  (3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

  等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

  问题与情景

  师生行为

  设计意图

  [活动4]

  做—做

  探索等腰梯形的性质(引入用轴对称解决问题的思想).

  在一张方格纸上作一个等腰梯形,连接两条对角线.

  (1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;

  (2)这个等腰梯形的两条对角线的长度有什么关系?

  学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

  针对不同认识水平的学生,教师指导学生活动.

  师生共同归纳:

  ①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

  ②等腰梯形两腰相等.

  ③等腰梯形同一底上的两个角相等.

  ④等腰梯形的两条对角线相等.

  教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

  [活动5]

  练—练

  例1 (教材P118的例1)略.

  例2 如图,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的长.

  师生共同分析,寻找解决问题的方法和策略.

  例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

  分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

  其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通过题目的练习与讲解应让学生知道:解决梯形问题的.基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

  问题与情景

  师生行为

  设计意图

  例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求证:BE=CD.

  分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  证明(略)

  例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

  [活动6]

  1.小结

  2.布置作业

  (1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

  (2)已知:如图,

  梯形ABCD中,CD//AB,,.

  求证:AD=AB—DC.

  (3)已知,如图,

  梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

  师生归纳总结:

  解决梯形问题常用的方法:

  (1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

  (2)“作高”:使两腰在两个直角三角形中(图2);

  (3)“延腰”:构造具有公共角的两个等腰三角形(图3);

  (4)“平移对角线”:使两条对角线在同一个三角形中(图4);

  (5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

  尽量多地让学生参与发言是一个交流的过程.

  梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

  学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

八年级数学教案 篇3

  教学目标

  知识与技能

  用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤.

  过程与方法

  1.通过设置问题串,让学生体会分析复杂问题的思考方法.

  2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型.

  情感态度与价值观

  在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神.

  教学重点

  1.初步体会列方程组解决实际问题的步骤.

  2.学会用图表 分析较复杂的数量关系问题。

  教学难点

  将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。

  教学准备:

  教具:教材,课件,电脑(视频播放器)

  学具:教材,练习本

  教学过程

  第一环节:复习提问(5分钟,学生口答)

  内容:填空:

  (1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为 .

  (2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 .

  (3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的`右边,将得到一个新的四位数,那么这个四位数用代数式可表示为 .

  第二环节:情境引入(10分钟,学生动脑思考,全班交流)

  内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能 确定小明在12:00时看到的里程碑上的数吗?

  第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)

  内容:例1

  两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.

  学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.

  第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

  内容:练习

  1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1.这个两位数是多少?

  2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数.

  第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

  内容:

  1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.

  2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.

  第 六环节:布置作业

  内容:习题7.6

  A组(优等生) 2,3,4

  B组(中等生)2、3

  C组(后三分之一生)2

八年级数学教案 篇4

  第一步:情景创设

  乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

  A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

  (1)请你算一算它们的平均数和极差。

  (2)是否由此就断定两厂生产的乒乓球直径同样标准?

  今天我们一起来探索这个问题。

  探索活动

  通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动

  算一算

  把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

  想一想

  你认为哪种方法更能明显反映数据的波动情况?

  第二步:讲授新知:

  (一)方差

  定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用

  来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

  意义:用来衡量一批数据的波动大小

  在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定

  归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小

  (3)方差主要应用在平均数相等或接近时

  (4)方差大波动大,方差小波动小,一般选波动小的

  方差的简便公式:

  推导:以3个数为例

  (二)标准差:

  方差的算术平方根,即④

  并把它叫做这组数据的.标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

  注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

八年级数学教案 篇5

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的性质的理解和拓展运用。

  学习过程 :

  一、探索活动

  如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

  两针孔A、A和线段AA与折痕MN之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的.图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

  2、那么 直线MN为什么会垂直平分线段AA呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

  例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.

  4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

  5.如图,再在纸上任画一点C,并仿照上面进行操作.

  (1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

  (2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

  (2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.

  (3)AE与BF平行吗?为什么?

  (4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

  (5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

八年级数学教案 篇6

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的.分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

八年级数学教案 篇7

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

  本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

  2、 教法建议

  本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的'主人. 具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

  (2)采用“类比”的学习方法,获取逆定理

  线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

  (3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

【热门】八年级数学教案11-29

八年级数学教案人教版01-03

八年级下册数学教案01-01

八年级数学教案【热】11-29

【荐】八年级数学教案12-03

八年级数学教案【荐】12-06

八年级的数学教案15篇12-14

八年级数学教案【推荐】12-04