现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-08-28 18:23:57 八年级数学教案 我要投稿

关于八年级数学教案范文集合6篇

  作为一位不辞辛劳的人民教师,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?下面是小编收集整理的八年级数学教案6篇,欢迎阅读与收藏。

关于八年级数学教案范文集合6篇

八年级数学教案 篇1

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的`两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

八年级数学教案 篇2

  教学指导思想与理论依据

  《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

  教学内容分析:

  本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

  学生情况分析:

  本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

  教学方式与教学手段说明:

  本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

  知识与技能:

  1、初步理解特殊四边形性质;

  2、培养学生自主收集、描述和分析数据的能力;

  过程与方法:

  1、了解特殊四边形性质的形成过程;

  2、初步了解探究新知识的一些方法;

  情感与价值观:

  1、了解特殊四边形在日常生活中的应用;

  2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

  3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

  教学环境:

  多媒体计算机网络教室

  教学课型:

  试验探究式

  教学重点:

  特殊四边形性质

  教学难点:

  特殊四边形性质的发现

  一、设置情景,提出问题

  提出问题:

  知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?

  1、电动门的网格和结点能组成哪些四边形?

  2、在开(关)门过程中这些四边形是如何变化的?

  3、你还发现了什么?

  解决问题:

  学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

  当我们学习完本节知识后,其他问题就容易解决了。

  (意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

  二、整体了解,形成系统

  本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

  提出问题:

  1、本章主要研究哪些特殊四边形?

  2、从哪几方面研究这些特殊四边形?

  3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?

  解决问题:

  学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

  1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

  2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;

  3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

  (意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

  三、个体研究、总结性质

  1、平行四边形性质

  提出问题:

  在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

  解决问题:

  教师引导学生拖动B点(学生操作电脑),改变平行四边形的.形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

  在图形变化过程中,

  (1)对边相等;

  (2)对角相等;

  (3)通过AO=CO 、BO=DO,可得对角线互相平分;

  (4)通过邻角互补,可得对边平行;

  (5)内外角和都等于360度;

  (6)邻角互补;

  ……

  指导学生填表:

  平行四边形性质矩形性质正方形性质

  菱形性质

  梯形性质等腰梯形性质

  直角梯形性质

  (既属于平行四边形性质又属于矩形性质可以画箭头)

  按照平行四边形性质的探索思路,分别研究:

  2、矩形性质;

  3、菱形性质;

  4、正方形性质;

  5、梯形性质;

  6、等腰梯形性质;

  7、直角梯形的性质。

  (意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

  教师总结:

  (意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

  四、联系生活,解决问题

  解决问题:

  学生操作电脑,观察图形、分组讨论,教师个别指导。

  学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

  四边形具有不稳定性,而三角形没有这个特点……

  (意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

  五、小结

  1.研究问题从整体到局部的方法;

  2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

  六、作业

  1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

  2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

  学习效果评价

  针对教学内容、学生特点及设计方案,预计下列学习效果:

  利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

  在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

  学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;

  由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案 篇3

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的`性质的理解和拓展运用。

  学习过程 :

  一、探索活动

  如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

  两针孔A、A和线段AA与折痕MN之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

  2、那么 直线MN为什么会垂直平分线段AA呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

  例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.

  4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

  5.如图,再在纸上任画一点C,并仿照上面进行操作.

  (1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

  (2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

  (2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.

  (3)AE与BF平行吗?为什么?

  (4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

  (5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

八年级数学教案 篇4

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的.两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案 篇5

  教学内容和地位:

  众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

  本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

  认知目标:

  (1)使学生认知众数、中位数的意义;

  (2)会求一组数据的众数、中位数。

  能力目标:

  (1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

  (2)在问题解决的过程中,培养学生的自主学习能力;

  (3)在问题分析的过程中,培养学生的`团结协作精神。

  情感目标:

  (1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

  (2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

  根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

八年级数学教案 篇6

  教学建议

  知识结构

  重难点分析

  本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

  本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

  教法建议

  1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

  2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

  教学设计示例

  一、教学目标

  1.掌握中位线的概念和三角形中位线定理

  2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

  3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

  4.通过定理证明及一题多解,逐步培养学生的.分析问题和解决问题的能力

  5. 通过一题多解,培养学生对数学的兴趣

  二、教学设计

  画图测量,猜想讨论,启发引导.

  三、重点、难点

  1.教学重点:三角形中位线的概论与三角形中位线性质.

  2.教学难点:三角形中位线定理的证明.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

  2.说明定理的证明思路.

  3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

  分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

  4.什么叫三角形中线?(以上复习用投影仪打出)

  【引入新课】

  1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

  (结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

  2.三角形中位线性质

  了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

  如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

  三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

  应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

  由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

  (l)延长DE到F,使 ,连结CF,由 可得AD FC.

  (2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

  (3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

  上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

  (证明过程略)

  例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

  (由学生根据命题,说出已知、求证)

  已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

  求证:四边形EFGH是平行四边形.‘

  分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

  证明:连结AC.

  ∴ (三角形中位线定理).

  同理,

  ∴GH EF

  ∴四边形EFGH是平行四边形.

  【小结】

  1.三角形中位线及三角形中位线与三角形中线的区别.

  2.三角形中位线定理及证明思路.

  七、布置作业

  教材P188中1(2)、4、7

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

八年级下册数学教案01-01

八年级数学教案人教版01-03

八年级数学教案【荐】12-06

【精】八年级数学教案12-04

八年级数学教案【精】12-04

【热门】八年级数学教案11-29

八年级数学教案【热】11-29

人教版八年级数学教案11-04