现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-09-05 14:07:59 八年级数学教案 我要投稿

关于八年级数学教案范文8篇

  作为一位杰出的教职工,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。来参考自己需要的教案吧!下面是小编为大家收集的八年级数学教案8篇,欢迎阅读,希望大家能够喜欢。

关于八年级数学教案范文8篇

八年级数学教案 篇1

  总课时:7课时 使用人:

  备课时间:第八周 上课时间:第十周

  第4课时:5、2平面直角坐标系(2)

  教学目标

  知识与技能

  1.在给定的直角坐标系下,会根据坐标描出点的位置;

  2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

  过程与方法

  1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;

  2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

  情感态度与价值观

  通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

  教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

  教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

  教学过程

  第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)

  在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

  练习:指出下列 各点以及所在象限或坐标轴:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)

  由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

  第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)

  1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 学生操作完毕后)

  2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  观察所得的图形,你觉得它像什么?

  分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?

  (出示学生的作品)画出是 这样的.吗?这幅图画很美,你们觉得它像什么?

  这个图形像一栋房子旁边还有一棵大树。

  3.做一做

  (出示投影)

  在书上已建立的直角坐标系画,要求每位同学独立完成。

  (学生描点、画图)

  (拿出一位做对的学生的作品投影)

  你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

  (像猫脸)

  第三环节 学有所用.(10分钟,先独立完成,后小组讨论)

  (补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  观察所得的图形,你觉得它像什么?(像移动的菱形)

  2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

  先独立完成,然后小组讨论是否正确。

  第四环节 感悟与收获(5分钟,学生总结,全班交流)

  本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

  在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

  第五环节 布置作业

  习题5、4

  A组(优等生)1、2、3

  B组(中等生)1、2

  C组(后三分之一生)1、2

八年级数学教案 篇2

  教学内容和地位:

  众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

  本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

  认知目标:

  (1)使学生认知众数、中位数的意义;

  (2)会求一组数据的众数、中位数。

  能力目标:

  (1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

  (2)在问题解决的过程中,培养学生的自主学习能力;

  (3)在问题分析的过程中,培养学生的团结协作精神。

  情感目标:

  (1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的.兴趣;

  (2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

  根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

八年级数学教案 篇3

  教学目标

  1、知识与技能目标

  学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

  2、过程与方法

  (1)经历一般规律的探索过程,发展学生的抽象思维能力.

  (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  3、情感态度与价值观

  (1)通过有趣的问题提高学习数学的兴趣.

  (2)在解决实际问题的过程中,体验数学学习的实用性.

  教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

  教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

  教学准备:

多媒体

  教学过程:

  第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

  情景:

  如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

  第二环节:合作探究(15分钟,学生分组合作探究)

  学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的'路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.

  学生汇总了四种方案:

  (1) (2) (3)(4)

  学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.

  学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

  如图:

  (1)中A→B的路线长为:AA’+d;

  (2)中A→B的路线长为:AA’+A’B>AB;

  (3)中A→B的路线长为:AO+OB>AB;

  (4)中A→B的路线长为:AB.

  得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

  第三环节:做一做(7分钟,学生合作探究)

  教材23页

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  第四环节:巩固练习(10分钟,学生独立完成)

  1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?

  2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

  第五环节 课堂小结(3分钟,师生问答)

  内容:

  1、如何利用勾股定理及逆定理解决最短路程问题?

  第六 环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1.课本习题1.5第1,2,3题.

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  板书设计:

  教学反思:

八年级数学教案 篇4

  教学目标

  ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

  ②理解整式除法的算理,发展有条理的思考及表达能力。

  教学重点与难点

  重点:整式除法的运算法则及其运用。

  难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

  教学准备

  卡片及多媒体课件。

  教学设计

  情境引入

  教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

  重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

  注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

  探究新知

  (1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

  (2)你能利用(1)中的方法计算下列各式吗?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根据(2)说说单项式除以单项式的运算法则吗?

  注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

  单项式的除法法则的推导,应按从具体到一般的'步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

  归纳法则

  单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

  应用新知

  例2计算:

  (1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

  注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

  巩固新知教科书第162页练习1及练习2。

  学生自己尝试完成计算题,同桌交流。

  注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

  作业

  1。必做题:教科书第164页习题15。3第1题;第2题。

  2。选做题:教科书第164页习题15。3第8题

八年级数学教案 篇5

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题.

  问题1如图是某地一天内的气温变化图.

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃.最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

  解随着存期x的增长,相应的年利率y也随着增长.

  问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________.

  解(1)l与f的乘积是一个定值,即

  lf=300000,

  或者说.

  (2)波长l越大,频率f就 越小 .

  问题4圆的面积随着半径的增大而增大.如果用r表示圆的.半径,S表示圆的面积则S与r之间满足下列关系:S=_________.

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________.

  解S=πr2.

  圆的半径越大,它的面积就越大.

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学教案 篇6

  教材分析

  1本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的.严谨,启迪学习态度和方法。

  学情分析

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  教学目标

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  教学重点和难点

  重点:能运用完全平方公式进行简单的计算。

  难点:会推导完全平方公式

  教学过程

  教学过程设计如下:

  〈一〉、提出问题

  [引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答]分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答]总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答]完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判断:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、一现身手

  ① (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1)公式右边共有3项。

  (2)两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、探险之旅

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  板书设计

  完全平方公式

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)2=a2+2ab+b2;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2

八年级数学教案 篇7

  复习第一步::

  勾股定理的有关计算

  例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

  析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

  勾股定理解实际问题

  例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

  析解:彩旗自然下垂的长度就是矩形DCEF

  的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂时的最低处离地面的最小高度h为70cm

  与展开图有关的计算

  例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

  析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

  在矩形ACC’A’中,因为AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴从顶点A到顶点C’的最短距离为

  复习第二步:

  1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的.斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

  例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

  错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

  正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

  例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

  错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

  剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

  正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

  温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

  例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

  错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

八年级数学教案 篇8

  一、学生起点分析

  通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

  二、教学任务分析

  《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

  本节课的教学目标是:

  ①通过拼图活动,让学生感受客观世界中无理数的存在;

  ②能判断三角形的某边长是否为无理数;

  ③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

  ④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

  三、教学过程设计

  本节课设计了6个教学环节:

  第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

  第一环节:质疑

  内容:【想一想】

  ⑴一个整数的平方一定是整数吗?

  ⑵一个分数的平方一定是分数吗?

  目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

  效果:为后续环节的进行起了很好的铺垫的作用

  第二环节:课题引入

  内容:1.【算一算】

  已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?

  2.【剪剪拼拼】

  把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

  目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

  效果:巧设问题背景,顺利引入本节课题.

  第三环节:获取新知

  内容:【议一议】→【释一释】→【忆一忆】→【找一找】

  【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?

  【释一释】:释1.满足 的 为什么不是整数?

  释2.满足 的 为什么不是分数?

  【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

  【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

  目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

  效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

  第四环节:应用与巩固

  内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

  【画一画1】:在右1的正方形网格中,画出两条线段:

  1.长度是有理数的线段

  2.长度不是有理数的线段

  【画一画2】:在右2的正方形网格中画出四个三角形 (右1)

  2.三边长都是有理数

  2.只有两边长是有理数

  3.只有一边长是有理数

  4.三边长都不是有理数

  【仿一仿】:例:在数轴上表示满足 的

  解: (右2)

  仿:在数轴上表示满足 的

  【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

  它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)

  目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

  效果:加深了对“新知”的理解,巩固了本课所学知识.

  第五环节:课堂小结

  内容:

  1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?

  2.客观世界中,的确存在不是有理数的.数,你能列举几个吗?

  3.除了本课所认识的非有理数的数以外,你还能找到吗?

  目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

  效果:学生总结、相互补充,学会进行概括总结.

  第六环节:布置作业

  习题2.1

  六、教学设计反思

  (一)生活是数学的源泉,兴趣是学习的动力

  大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

  (二)化抽象为具体

  常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

  (三)强化知识间联系,注意纠错

  既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

初中八年级数学教案11-03

八年级上册数学教案11-09

人教版八年级数学教案11-04

【热】八年级数学教案12-07

八年级数学教案【荐】12-06

八年级数学教案【推荐】12-04

【推荐】八年级数学教案12-05

【精】八年级数学教案12-04