现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-09-07 02:03:42 八年级数学教案 我要投稿

关于八年级数学教案范文锦集5篇

  作为一位不辞辛劳的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。如何把教案做到重点突出呢?以下是小编整理的八年级数学教案5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于八年级数学教案范文锦集5篇

八年级数学教案 篇1

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  八年级数学上册教案四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  教师活动

  学生活动

  设计意图

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的`积极性,发掘他们的想象力。

  (演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  (演示课件)教材65页“随堂练习”。

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

八年级数学教案 篇2

  一、教学目标

  1.理解一个数平方根和算术平方根的意义;

  2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3.通过本节的训练,提高学生的逻辑思维能力;

  4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合

  四、教学手段

  幻灯片

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  ( )2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1.一个正数有两个平方根,它们互为相反数。

  2.0有一个平方根,它是0本身。

  3.负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的`平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:1.用正确的符号表示下列各数的平方根:

  ①26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

  ②247的平方根是

  ③0。2的平方根是

  ④3的平方根是

  ⑤ 的平方根是

  由学生说出上式的读法。

  例1。下列各数的平方根:

  (1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根为±9。即:

  (2)

  的平方根是 ,即

  (3)

  的平方根是 ,即

  (4)∵(±0。7)2=0。49,

  ∴0。49的平方根为±0。7。

  小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。

  六、总结

  本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。

  七、作业

  教材P。127练习1、2、3、4。

  八、板书设计

  平方根

  (一)概念 (四)表示方法 例1

  (二)性质

  (三)开平方

  探究活动

  求平方根近似值的一种方法

  求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。

  例1。求 的值。

  解 ∵92102,

  两边平方并整理得

  ∵x1为纯小数。

  18x1≈16,解得x1≈0。9,

  便可依次得到精确度

  为0。01,0。001,……的近似值,如:

  两边平方,舍去x2得19.8x2≈—1.01

八年级数学教案 篇3

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的`性质的理解和拓展运用。

  学习过程 :

  一、探索活动

  如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

  两针孔A、A和线段AA与折痕MN之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

  2、那么 直线MN为什么会垂直平分线段AA呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

  例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.

  4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

  5.如图,再在纸上任画一点C,并仿照上面进行操作.

  (1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

  (2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

  (2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.

  (3)AE与BF平行吗?为什么?

  (4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

  (5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

八年级数学教案 篇4

  一、教学目标

  1.灵活应用勾股定理及逆定理解决实际问题.

  2.进一步加深性质定理与判定定理之间关系的认识.

  二、重点、难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题.

  2.难点:灵活应用勾股定理及逆定理解决实际问题.

  3.难点的突破方法:

  三、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

  四、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

  例2(补充)一根30米长的'细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

  解略.

  本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

八年级数学教案 篇5

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

  根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

  通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

  通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

  (二)重点、难点

  一元二次方程根与系数的关系是重点,让学生从具体方程的.根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  (三)教学目标

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

八年级的数学教案15篇12-14

【热】八年级数学教案12-07

初中八年级数学教案11-03

【荐】八年级数学教案12-03

【精】八年级数学教案12-04

八年级数学教案【精】12-04

八年级数学教案【热门】12-03

八年级数学教案【荐】12-06