八年级数学教案模板集合10篇
作为一名默默奉献的教育工作者,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?下面是小编收集整理的八年级数学教案10篇,仅供参考,欢迎大家阅读。
八年级数学教案 篇1
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的'特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
八年级数学上册教案四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
教师活动
学生活动
设计意图
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
(演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
(演示课件)教材65页“随堂练习”。
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
八年级数学教案 篇2
教学目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学重点:分式通分的理解和掌握。
教学难点:分式通分中最简公分母的确定。
教学工具:投影仪
教学方法:启发式、讨论式
教学过程:
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的`同分母的分式,叫做分式的通分.
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.
根据分式通分和最简公分母的定义,将分式通分:
最简公分母为:
然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:xxx
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。
八年级数学教案 篇3
学习目标:
1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.
2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.
3、利用轴对称的基本性质解决实际问题。
学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。
学习难点:轴对称的'性质的理解和拓展运用。
学习过程 :
一、探索活动
如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.
两针孔A、A和线段AA与折痕MN之间有什么关系?
1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.
2、那么 直线MN为什么会垂直平分线段AA呢?
3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).
例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线.
4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?
5.如图,再在纸上任画一点C,并仿照上面进行操作.
(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?
(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?
(3)轴对称有哪些性质?
6.轴对称的性质:
(1)成轴对称的两个图形全等.
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.
二、例题讲解
例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .
(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.
(3)AE与BF平行吗?为什么?
(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?
(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?
八年级数学教案 篇4
一、 教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,能熟练地求出分式有意义的条件.
二、重点、难点
1.重点:理解分式有意义的条件.
2.难点:能熟练地求出分式有意义的条件.
三、课堂引入
1.让学生填写P127[思考],学生自己依次填出:,,,.
2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为v /h.
轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
四、例题讲解
P128例1. 当下列分式中的字母为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母的取值范围.
[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.
[答案] (1)=0 (2)=2 (3)=1
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的`值为0?
(1) (2) (3)
六、课后练习
1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
八年级数学教案 篇5
教学目标
知识与技能
用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤.
过程与方法
1.通过设置问题串,让学生体会分析复杂问题的思考方法.
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型.
情感态度与价值观
在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神.
教学重点
1.初步体会列方程组解决实际问题的步骤.
2.学会用图表 分析较复杂的数量关系问题。
教学难点
将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。
教学准备:
教具:教材,课件,电脑(视频播放器)
学具:教材,练习本
教学过程
第一环节:复习提问(5分钟,学生口答)
内容:填空:
(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的.数字得到一个新的两位数,用代数式表示为 .
(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 .
(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为 .
第二环节:情境引入(10分钟,学生动脑思考,全班交流)
内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能 确定小明在12:00时看到的里程碑上的数吗?
第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)
内容:例1
两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.
学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.
第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)
内容:练习
1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1.这个两位数是多少?
2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数.
第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)
内容:
1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.
2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.
第 六环节:布置作业
内容:习题7.6
A组(优等生) 2,3,4
B组(中等生)2、3
C组(后三分之一生)2
八年级数学教案 篇6
一、学习目标及重、难点:
1、了解方差的定义和计算公式。
2、理解方差概念的产生和形成的过程。
3、会用方差计算公式来比较两组数据的波动大小。
重点:方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式
二、自主学习:
(一)知识我先懂:
方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用
来表示。
给力小贴士:方差越小说明这组数据越 。波动性越 。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。
2、甲、乙两组数据如下:
甲组:10 9 11 8 12 13 10 7;
乙组:7 8 9 10 11 12 11 12.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.
三、新课讲解:
引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )
(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )
归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的'方差:即用 来表示。
(一)例题讲解:
例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、
测试次数 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志强 10 13 16 14 12
给力提示:先求平均数,在利用公式求解方差。
(二)小试身手
1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定
去参加比赛。
1、求下列数据的众数:
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?
四、课堂小结
方差公式:
给力提示:方差越小说明这组数据越 。波动性越 。
每课一首诗:求方差,有公式;先平均,再求差;
求平方,再平均;所得数,是方差。
五、课堂检测:
1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题
七、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案 篇7
课时目标
1.掌握分式、有理式的概念。
2.掌握分式是否有意义、分式的值是否等于零的识别方法。
教学重点
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学难点:
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学时间:一课时。
教学用具:投影仪等。
教学过程:
一.复习提问
1.什么是整式?什么是单项式?什么是多项式?
2.判断下列各式中,哪些是整式?哪些不是整式?
①+m2 ②1+x+y2- ③ ④
⑤ ⑥ ⑦
二.新课讲解:
设问:不是整工式子中,和整式有什么区别?
小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。
练习:下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
强调:(6)+4带有是无理式,不是整式,故不是分式。
2.小结:对整式、分式的正确区别:分式的.分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。
练习:课后练习P6练习1、2题
设问:(让学生看课本上P5“思考”部分,然后回答问题。)
例题讲解:课本P5例题1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。
(板书解题过程。)
3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。
增加例题:当x取什么值时,分式有意义?
解:由分母x2-4=0,得x=±2。
∴ 当x≠±2时,分式有意义。
设问:什么时候分式的值为零呢?
例:
解:当 ① 分式的值为零
八年级数学教案 篇8
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的.图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学教案 篇9
教学目标
一、教学知识点:
1.旋转的定义.2.旋转的基本性质.
二、能力训练要求:
1.通过具体实例认识旋转,理解旋转的基本涵义.
2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.
三、情感与价值观要求
1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.
2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.
教学重点:旋转的基本性质.
教学难点:探索旋转的基本性质.
教学方法:
1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。
2、采用多媒体课件辅助教学。
教学过程:
一.巧设情景问题,引入课题
日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?
1.在这些转动的现象中,它们都是绕着一个点转动的.
2.每个物体的转动都是向同一个方向转动.
3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.
4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.
二.讲授新课
在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.
议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.
(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.
(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.
(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.
(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的'位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.
看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?
答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.
因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.
由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.
[例1](课本68页例1)
[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.
解:(见课本68页)
书上68页做一做
三.课堂练习
课本P69随堂练习.
1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.
四.课时小结
五.课后作业:课本P69习题3.4 1、2、3.
六.活动与探究
1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.
结果:旋转现象为:
整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.
整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.
整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.
2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?
过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.
结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.
整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.
整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.
板书设计:略
教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。
八年级数学教案 篇10
一、教学目标:
1、会根据频数分布表求加权平均数,从而解决一些实际问题
2、会用计算器求加权平均数的值
3、会运用样本估计总体的方法来获得对总体的认识
二、重点、难点:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、教学过程:
1、复习
组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的`表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.
2、教材P140探究栏目的意图
①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.
②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.
3、教材P140的思考的意图.
①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.
②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.
4、利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.
5、运用样本估计总体
要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级数学教案06-18
八年级数学教案【荐】12-06
【荐】八年级数学教案12-03
八年级数学教案【推荐】12-04
【推荐】八年级数学教案12-05
八年级数学教案【热门】12-03
八年级的数学教案15篇12-14
【热】八年级数学教案12-07
人教版八年级数学教案11-04