现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-04-09 06:06:13 八年级数学教案 我要投稿

八年级数学教案模板6篇

  作为一名教职工,编写教案是必不可少的,借助教案可以更好地组织教学活动。教案要怎么写呢?以下是小编帮大家整理的八年级数学教案6篇,欢迎阅读,希望大家能够喜欢。

八年级数学教案模板6篇

八年级数学教案 篇1

  教学目标

  ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

  ②理解整式除法的算理,发展有条理的思考及表达能力。

  教学重点与难点

  重点:整式除法的运算法则及其运用。

  难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

  教学准备

  卡片及多媒体课件。

  教学设计

  情境引入

  教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

  重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

  注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

  探究新知

  (1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

  (2)你能利用(1)中的方法计算下列各式吗?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根据(2)说说单项式除以单项式的运算法则吗?

  注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的`语言进行描述。

  单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

  归纳法则

  单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

  应用新知

  例2计算:

  (1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

  注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

  巩固新知教科书第162页练习1及练习2。

  学生自己尝试完成计算题,同桌交流。

  注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

  作业

  1。必做题:教科书第164页习题15。3第1题;第2题。

  2。选做题:教科书第164页习题15。3第8题

八年级数学教案 篇2

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的'交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学教案 篇3

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

  根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的'因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

  通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

  通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

  (二)重点、难点

  一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  (三)教学目标

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

八年级数学教案 篇4

  课时目标

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意义、分式的值是否等于零的识别方法。

  教学重点

  正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

  教学难点:

  正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

  教学时间:一课时。

  教学用具:投影仪等。

  教学过程:

  一.复习提问

  1.什么是整式?什么是单项式?什么是多项式?

  2.判断下列各式中,哪些是整式?哪些不是整式?

  ①+m2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新课讲解:

  设问:不是整工式子中,和整式有什么区别?

  小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。

  练习:下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  强调:(6)+4带有是无理式,不是整式,故不是分式。

  2.小结:对整式、分式的.正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

  练习:课后练习P6练习1、2题

  设问:(让学生看课本上P5“思考”部分,然后回答问题。)

  例题讲解:课本P5例题1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。

  (板书解题过程。)

  3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。

  增加例题:当x取什么值时,分式有意义?

  解:由分母x2-4=0,得x=±2。

  ∴ 当x≠±2时,分式有意义。

  设问:什么时候分式的值为零呢?

  例:

  解:当 ① 分式的值为零

八年级数学教案 篇5

  知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数

  能力目标:会用变化的量描述事物

  情感目标:回用运动的观点观察事物,分析事物

  重点:函数的概念

  难点:函数的概念

  教学媒体:多媒体电脑,计算器

  教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围

  教学设计:

  引入:

  信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?

  新课:

  问题:(1)如图是某日的气温变化图。

  ① 这张图告诉我们哪些信息?

  ② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?

  (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:

  ① 这表告诉我们哪些信息?

  ② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?

  一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的'值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  范例:例1 判断下列变量之间是不是函数关系:

  (5) 长方形的宽一定时,其长与面积;

  (6) 等腰三角形的底边长与面积;

  (7) 某人的年龄与身高;

  活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系

  思考:自变量是否可以任意取值

  例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。

  (1) 写出表示y与x的函数关系式.

  (2) 指出自变量x的取值范围.

  (3) 汽车行驶200km时,油箱中还有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活动2:练习教材9页练习

  小结:(1)函数概念

  (2)自变量,函数值

  (3)自变量的取值范围确定

  作业:18页:2,3,4题

八年级数学教案 篇6

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的.加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

初中八年级数学教案11-03

人教版八年级数学教案11-04

八年级上册数学教案11-09

八年级的数学教案15篇12-14

八年级下册数学教案01-01

八年级数学教案人教版01-03

八年级数学教案【热门】12-03

【热门】八年级数学教案11-29