八年级数学教案范文九篇
作为一名辛苦耕耘的教育工作者,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。我们该怎么去写教案呢?以下是小编为大家整理的八年级数学教案9篇,仅供参考,欢迎大家阅读。
八年级数学教案 篇1
教学目的
1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2. 熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点
等腰三角形的性质及其应用。
教学难点
简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称等边对等角。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称三线合一。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此三线合一。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到B=C,又由B+C=180,从而推出B=C=60。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的'度数。
分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由三线合一可知AD是△ABC的顶角平分线,底边上的高,从而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打,错的打。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60的等腰三角形,其它两个内角也为60( )
2.如图(2),在△ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。三线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业
1.课本P127─7,9
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,
EOD的度数。
(一)课本P127─1、3、4、8题.
八年级数学教案 篇2
教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
教学重点:
掌握整数指数幂的运算性质.
难点:
会用科学计数法表示小于1的数.
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.
教学过程:
一、课堂引入
1.回忆正整数指数幂的运算性质: (1)同底数的.幂的乘法:am?an = am+n (m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n); (5)商的乘方:()n = (n是正整数);
2.回忆0指数幂的规定,即当a≠0时,a0 = 1.
3.你还记得1纳米=10?9米,即1纳米=米吗?
4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.
三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.
八年级数学教案 篇3
【教学目标】
1、了解三角形的中位线的概念
2、了解三角形的中位线的性质
3、探索三角形的中位线的性质的一些简单的应用
【教学重点、难点】
重点:三角形的中位线定理。
难点:三角形的中位线定理的证明中添加辅助线的思想方法。
【教学过程】
(一)创设情景,引入新课
1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?
2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片
(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?
(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?
3、引导学生概括出中位线的'概念。
问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?
启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。
4、猜想:DE与BC的关系?(位置关系与数量关系)
(二)、师生互动,探究新知
1、证明你的猜想
引导学生写出已知,求证,并启发分析。
(已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)
启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)
启发2:证明线段的倍分的方法有哪些?(截长或补短)
学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。
证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),
∴DF∥BC(根据什么?),
∴DE 1/2BC
2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。
(三)学以致用、落实新知
1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?
2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?
3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。
求证:四边形EFGH是平行四边形。
启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?
启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?
证明:如图,连接AC。
∵EF是⊿ABC的中位线,
∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)
挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?
(四)学生练习,巩固新知
1、请回答引例中的问题(1)
2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN
(五)小结回顾,反思提高
今天你学到了什么?还有什么困惑?
八年级数学教案 篇4
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的`概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
八年级数学教案 篇5
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移
2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。
3.简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转
2.旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的.距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。
八年级数学教案 篇6
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的'逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
八年级数学教案 篇7
教学目标
(一)知识与技能目标
使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.
(二)过程与方法目标
通过分式的化简提高学生的运算能力.
(三)情感与价值目标.
渗透类比转化的数学思想方法.
教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质进行分式化简.
教学方法:分组讨论.
教学过程
(一)情境引入
1.数学小笑话:
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
2.问:这个富家子弟为什么会犯这样的错误?
3.分数约分的方法及依据是什么?
(1)的依据是什么?呢?
(2)你认为分式与相等吗?与呢?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
=,=(其中M是不等于零的`整式)
2.加深对分式基本性质的理解:
例1下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:为什么c≠0?
解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)
八年级数学教案 篇8
一、目标要求
1.理解掌握异分母分式加减法法则。
2.能正确熟练地进行异分母分式的加减运算。
二、重点难点
重点:异分母分式的加减法法则及其运用。
难点:正确确定最简公分母和灵活运用法则。
1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。
2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的.基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。
三、解题方法指导
【例1】计算:(1)++;
(2)-x-1;
(3)--。
分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。
解:(1)原式=-+=-+====;
(2)原式======;
(3)原式=--===。
【例2】计算:。+++。
分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。
解:原式=++=++=+=+==。
四、激活思维训练
▲知识点:异分母分式的加减
【例】计算:-+。
分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。
解:原式=[x+2-]-[x+3+]
+[+1]
=x+2--x-3-++1
=--+=====。
五、基础知识检测
1.填空题:
八年级数学教案 篇9
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的.平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2. 请点击下载Word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级数学教案06-18
初中八年级数学教案11-03
人教版八年级数学教案11-04
八年级上册数学教案11-09
八年级的数学教案15篇12-14
八年级下册数学教案01-01
八年级数学教案人教版01-03
八年级数学教案【热门】12-03
【热门】八年级数学教案11-29