现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-04-25 00:29:33 八年级数学教案 我要投稿

八年级数学教案范文集合5篇

  作为一名无私奉献的老师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?以下是小编精心整理的八年级数学教案5篇,希望能够帮助到大家。

八年级数学教案范文集合5篇

八年级数学教案 篇1

  教学指导思想与理论依据

  《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

  教学内容分析:

  本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

  学生情况分析:

  本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的.过程。

  教学方式与教学手段说明:

  本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

  知识与技能:

  1、初步理解特殊四边形性质;

  2、培养学生自主收集、描述和分析数据的能力;

  过程与方法:

  1、了解特殊四边形性质的形成过程;

  2、初步了解探究新知识的一些方法;

  情感与价值观:

  1、了解特殊四边形在日常生活中的应用;

  2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

  3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

  教学环境:

  多媒体计算机网络教室

  教学课型:

  试验探究式

  教学重点:

  特殊四边形性质

  教学难点:

  特殊四边形性质的发现

  一、设置情景,提出问题

  提出问题:

  知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?

  1、电动门的网格和结点能组成哪些四边形?

  2、在开(关)门过程中这些四边形是如何变化的?

  3、你还发现了什么?

  解决问题:

  学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

  当我们学习完本节知识后,其他问题就容易解决了。

  (意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

  二、整体了解,形成系统

  本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

  提出问题:

  1、本章主要研究哪些特殊四边形?

  2、从哪几方面研究这些特殊四边形?

  3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?

  解决问题:

  学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

  1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

  2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;

  3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

  (意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

  三、个体研究、总结性质

  1、平行四边形性质

  提出问题:

  在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

  解决问题:

  教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

  在图形变化过程中,

  (1)对边相等;

  (2)对角相等;

  (3)通过AO=CO 、BO=DO,可得对角线互相平分;

  (4)通过邻角互补,可得对边平行;

  (5)内外角和都等于360度;

  (6)邻角互补;

  ……

  指导学生填表:

  平行四边形性质矩形性质正方形性质

  菱形性质

  梯形性质等腰梯形性质

  直角梯形性质

  (既属于平行四边形性质又属于矩形性质可以画箭头)

  按照平行四边形性质的探索思路,分别研究:

  2、矩形性质;

  3、菱形性质;

  4、正方形性质;

  5、梯形性质;

  6、等腰梯形性质;

  7、直角梯形的性质。

  (意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

  教师总结:

  (意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

  四、联系生活,解决问题

  解决问题:

  学生操作电脑,观察图形、分组讨论,教师个别指导。

  学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

  四边形具有不稳定性,而三角形没有这个特点……

  (意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

  五、小结

  1.研究问题从整体到局部的方法;

  2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

  六、作业

  1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

  2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

  学习效果评价

  针对教学内容、学生特点及设计方案,预计下列学习效果:

  利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

  在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

  学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;

  由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案 篇2

  数据的波动

  教学目标:

  1、经历数据离散程度的探索过程

  2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

  教学重点:会计算某些数据的极差、标准差和方差。

  教学难点:理解数据离散程度与三个差之间的关系。

  教学准备:计算器,投影片等

  教学过程:

  一、创设情境

  1、投影课本P138引例。

  (通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的.离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

  2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

  二、活动与探究

  如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

  问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

  2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

  3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

  (在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

  三、讲解概念:

  方差:各个数据与平均数之差的平方的平均数,记作s2

  设有一组数据:x1, x2, x3,,xn,其平均数为

  则s2= ,

  而s= 称为该数据的标准差(既方差的算术平方根)

  从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

  四、做一做

  你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

  (通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

  五、巩固练习:课本第172页随堂练习

  六、课堂小结:

  1、怎样刻画一组数据的离散程度?

  2、怎样求方差和标准差?

  七、布置作业:习题5.5第1、2题。

八年级数学教案 篇3

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的`系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案 篇4

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的方法,从学生熟知的`知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

八年级数学教案 篇5

  教学目标

  一、教学知识点:

  1.旋转的定义.2.旋转的基本性质.

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义.

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

  教学重点:旋转的基本性质.

  教学难点:探索旋转的基本性质.

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一.巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的.

  2.每个物体的转动都是向同一个方向转动.

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

  二.讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

  议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的',它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

  解:(见课本68页)

  书上68页做一做

  三.课堂练习

  课本P69随堂练习.

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

  四.课时小结

  五.课后作业:课本P69习题3.4 1、2、3.

  六.活动与探究

  1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

  2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

  板书设计:

  教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

【热】八年级数学教案12-07

八年级的数学教案15篇12-14

八年级数学教案【推荐】12-04

八年级数学教案【荐】12-06

【精】八年级数学教案12-04

八年级数学教案【精】12-04

【热门】八年级数学教案11-29

【推荐】八年级数学教案12-05