七年级数学平行线教案(9篇)
作为一名优秀的教育工作者,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。写教案需要注意哪些格式呢?下面是小编为大家收集的七年级数学平行线教案,仅供参考,大家一起来看看吧。
七年级数学平行线教案1
一、教学目标
1.知识与技能
(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;
(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;
(3)在实践操作中,探索并了解平行线的有关性质;
2、数学思考
能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。
3、解决问题
能在观察、想像、实践、操作中发现并提出问题,初步体会在解决问题的过程中与他人合作、交流的'重要性。
4、情感与态度目标
认识到通过观察、想象、实践、操作、归纳可以获取数学知识,体验数学活动富有探索性,人而激发学生学习兴趣,增强学生的学习信心,培养学生可持续学习的能力。
二、教材分析
“平行线”是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关性质,为今后学平行线的判定做好铺垫。本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关结论。
学生在观察、实践、操作之前,教师要提醒学生注意以下几点:1、注意想象木条在转动过程中的位置变化情况;2、实际生活中,大量存在的是平行线段,要把它们看成直线;3、强调画平行线时要使用工具,不能徒手画,还注意不能只画横平或竖立的图形,要让学生画出一些变式图形。
三、学校与学生情况分析
万宁市第二中学是万宁市一所普通中学,大部分的学生来自农村,学校的教学条件一般。我校七年级的学生没有通过选拔考试,只是按要求就近入学。因此,大部分学生的基础以及学习习惯较差。但在新的教学理念的指导下,在课堂教学中,逐渐淡化了知识传授、接受学习、模仿训练等传统的模式,而注重学生学习兴趣与态度的培养,注重学生的自主探索和合作交流以及创新意识的培养,把课堂真正还给学生。另外,根据七年级学生的年龄特征,他们都具有好动、好胜、好强的心理特点,现在在我所任教的班级中,学生已初步形成了动手操作,自主探索和合作交流的良好学风,学生之间互相提问的生生互动的氛围已逐步形成。
七年级数学平行线教案2
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的.推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
七年级数学平行线教案3
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的.数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业
P25.1、2、3
〖补充作业
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
七年级数学平行线教案4
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题) (第2题)
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题.
1.你能用一张不规则的`纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
七年级数学平行线教案5
教学过程
一、目标展示
二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的'边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、
如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。
学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。
题组一:
1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的位置关系b只有与两种。
3、下列生活实例中:
(1)交通道路上的斑马线;
(2)天上的彩虹;
(3)阅兵队的纵队;
(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:
4、通过画图和观察,可得两个平行公理:
①、经过点,一条直线平行于已知直线;
②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:
①、a与b没有公共点,则a与b;
②、a与b有且只有一个公共点,则a与b;
③、 a与b有两个公共点,则a与b;
6、过一点画已知直线的平行线有()
A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条
教学设计
1、落实教学常规,践行学校《教师日常教学行为要求》。
2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。
七年级数学平行线教案6
教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.
重点:探索两直线平行的条件
难点:理解“同位角相等,两条直线平行”
教学过程
一、情景导入.
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
二、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
简化图5.2-5,得图.
图3
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说:同位角相等,两条直线平行.
符号语言:∵∠1=∠2∴AB∥CD.
如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的`就是平行线。
如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=1800,能得出a∥b吗?
你能用文字语言概括上面的结论吗?
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说:内错角相等,两直线平行.
符号语言:∵∠2=∠3∴a∥b.
(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)
∴∠2=∠1(同角的补角相等)
∴a∥b.(同位角相等,两条直线平行)
你能用文字语言概括上面的结论吗?
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单地说:同旁内角互补,两直线平行.
符号语言:∵∠4+∠2=180°∴a∥b.
四、课堂练习
1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?
2、课本P162题。
五、课堂小结:怎样判断两条直线平行?
六、布置作业::P16、1、2题;P174、5、6。
平行线,三角板,同位角,数学,教学
七年级数学平行线教案7
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:
平行线的性质。
教学难点:
平行线的性质定理与判定定理的区别。
教学模式:
发现教学模式。
教学方法:
直观教学法、发现教学法、主体互动法。
教学手段:
计算机辅助教学。
教学过程:
教学环节
教师活动
学 生活 动
教 学 意 图
复习提 问
复习提问:
判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课进行新课
【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:
对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
【提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
【大屏幕】平行线的性质:
定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。
定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。
定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。
【提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆、思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
【大屏幕】符号语言:(不唯一)
性质定理1。∵l1∥l2
∴∠1=∠5 (两直线平行,同位角相等)
性质定理1。∵l1∥l2
∴∠3=∠5 (两直线平行,内错角相等)
性质定理1。∵l1∥l2
∴∠3+∠6=180o (两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
【大屏幕】规范定理的推导过程。
思考、尝试回答
观察
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的`信心。
例题示范
【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习
【大屏幕】(见附录2)
思考、讨论、解释结论
寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习
【大屏幕】巩固练习(见附录3)
积极思考、展开讨论、踊跃回答
循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路
【大屏幕】探究题(见附录4)
【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂小结
【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳
将本节课知识进行回顾。
布置
作业
【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。
七年级数学平行线教案8
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的'能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
七年级数学平行线教案9
教学设计
(一)情境引入
演示两条直线被第三条直线所截的模型(如课本p13图5?2-1)让学生观察,在这个过程中,有没有直线a与b不相交的位置呢?这时,直线a与b的位置关系如何?在这种位置时,又有哪些性质?
揭示课题(板书):5.2.1平行线
(二)探讨“情境引入中的问题”
活动一:
活动内容:让学生拿出自己准备好的两直线被第三直线所截的模型,进行转动操作实践(固定b与c,转动a)。
活动方式:每位同学都动手实践,同桌互相交流,并在班上反馈。
提出问题:
(1)转动a,直线a从在c的左侧与直线b相交逐步变为在右侧与b相交,大家仔细观察,再想象一下,在这个过程中,是否存在a与b不相交的位置?
(2)在生活的身边,有很多线是平行的,大家找一找,我们教室里的哪些线是平行的?校图内有哪些线是平行的?
(3)同学们已经初步认识了平行线,也找出了很多的平行线,那究竟怎样的线叫平行线?
(4)在同一平面内,两条直线有几种位置关系?
活动结论:
①在同一平面内,不相交的两条直线叫做平行线。
②在同一平面内,两条直线的位置关系:相交与平行。
注:教师通过实例告诉学生,平行线必须在同一平面内。
活动二:
活动内容:让学生回忆活动一或让学生再次转动木条a,并仔细观察其变化情况,在黑板上出示课本p14图5.2-3,让学生画平行线。
活动方式:每位同学都动手操作实践,以前后桌四人为一个小组进行讨论交流,并选出一位代表在班上反馈。
提出问题:
(1)在活动一:转动木条a的过程中,有几个位置使得a与b平行?
(2)让学生拿出工具画图,在p14图5.2-3中,试过点b画直线a的平行线,能画出几条?再过点c画直线a的.平行线,能画出几条?
活动结论:经过直线外一点,有且只有一条直线与这条直线平行。
活动三:
活动内容:教师出示自己准备好的图片(课本p14图5.2-2),让学生观察、分析、讨论、交流。
活动方式:每位同学都仔细观察分析,以前后桌四人为一个小组进行讨论、交流,并选出一位代表在班上反馈。
提出问题:
(1)平行线在生活中到处可见,有时也可组成一道美丽的风景线(教师出示如课本p14图5.2-2的左图),在这一个图片中,哪些线是平行线?他们之间又有什么位置关系?
(2)在体育活动中也存在着平行线(教师出示如课本p14图5.2-2的右图),在这个图片中,旅游池中的隔道绳之间有什么位置关系?
(3)以上两个实例中,说明了平行线具有什么性质?
活动结论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
(三)知识的巩固与应用
1、课本p19习题5.2第7题。
2、选择题(用小黑板展示)
下列说法中不正确的是( )
a、过任一点p可以作已知直线a的平行线。
b、同一平面内的两条不相交的直线是平行线。
c、过直线外一点只能画一条直线与已知直线平行。
d、平行于同一条直线的两条直线平行。
(四)小结
从本节课的学习活动中,你有什么收获?(由学生自己小结)
(1)知识内容小结:①平行线的定义及其符号表示法。
②平行线的两条性质。
(2)学习方法小结:可以通过观察、想象、实践、分析等方式,来获得平行线的有关知识。
(五)作业布置
课本p20习题5.2第11题。
教学反思
本节课我主要安排了三个活动来完成,上完这节课后,自我感觉比较好,因为学生在课堂上表现比较积极、主动,由于七年级学生年龄较小,对模型、图片都比较感兴趣,全班学生都认真、主动地参与了观察、想象、实践、操作、讨论、交流等活动,绝大部分的学生都能在整个活动过程中得出结论。在轻松、和谐的氛围中完成教学任务。
感到不足的地方:第一,由于学生的基础不够好,有少部分的学生虽然积极参与了活动,但难于得出结论;第二,在实践画图的过程中,操作显得不够熟练;第三,由于学校班额的人数过多,在小组讨论、发表意见时,不能够让所有小组的代表都有发言机会。
【七年级数学平行线教案】相关文章:
初中数学平行线教案12-30
七年级数学下册教案平行线07-20
初中数学平行线的性质教案12-29
《平行线的性质》数学教案02-15
七年级数学教案平行线的判定12-29
初中数学平行线教案5篇12-30
七年级数学下册教案平行线6篇07-21
七年级数学下册教案平行线(6篇)07-21
七年级数学平行线教案通用9篇04-29
七年级数学《平行线的性质》教学反思03-20