现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-04-28 23:28:59 八年级数学教案 我要投稿

八年级数学教案模板锦集9篇

  在教学工作者实际的教学活动中,时常需要用到教案,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?下面是小编帮大家整理的八年级数学教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

八年级数学教案模板锦集9篇

八年级数学教案 篇1

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的.砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

八年级数学教案 篇2

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题.

  问题1如图是某地一天内的气温变化图.

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的'6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃.最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

  解随着存期x的增长,相应的年利率y也随着增长.

  问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________.

  解(1)l与f的乘积是一个定值,即

  lf=300000,

  或者说.

  (2)波长l越大,频率f就 越小 .

  问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________.

  解S=πr2.

  圆的半径越大,它的面积就越大.

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学教案 篇3

  教学任务分析

  教学目标

  知识技能

  探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

  数学思考

  能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

  解决问题

  通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

  情感态度

  在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.

  重点

  等腰梯形的性质及其应用.

  难点

  解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

  教学流程安排

  活动流程图

  活动的内容和目的

  活动1想一想

  活动2说一说

  活动3画一画

  活动4做—做

  活动5练一练

  活动6理一理

  观察梯形图片,引入本节课的学习内容.

  了解梯形定义、各部分名称及分类.

  通过画图活动,初步发现梯形与三角形的转化关系.

  探究得到等腰梯形的性质.

  通过解决具体问题,寻找解决梯形问题的方法.

  通过整理回顾,巩固知识、提高能力、渗透思想.

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1]

  观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

  演示图片,学生欣赏.

  结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

  由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

  [活动2]

  梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.

  学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

  通过类比,培养学生归纳、总结的能力.

  问题与情景

  师生行为

  设计意图

  一些基本概念

  (1)(如图):底、腰、高.

  (2)等腰梯形:两腰相等的`梯形叫做等腰梯形.

  (3)直角梯形:有一个角是直角的梯形叫做直角梯形.

  学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;

  ②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

  熟悉图形,明确概念,为探究图形性质做准备.

  [活动3]

  画一画

  在下列所给图中的每个三角形中画一条线段,

  (1)怎样画才能得到一个梯形?

  (2)在哪些三角形中,能够得到一个等腰梯形?

  在学生独立探究的基础上,学生分组交流.

  教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

  本次活动教师应重点关注:

  (1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

  (2)学生能否将等腰三角形转化为等腰梯形.

  (3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

  等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

  问题与情景

  师生行为

  设计意图

  [活动4]

  做—做

  探索等腰梯形的性质(引入用轴对称解决问题的思想).

  在一张方格纸上作一个等腰梯形,连接两条对角线.

  (1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;

  (2)这个等腰梯形的两条对角线的长度有什么关系?

  学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

  针对不同认识水平的学生,教师指导学生活动.

  师生共同归纳:

  ①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

  ②等腰梯形两腰相等.

  ③等腰梯形同一底上的两个角相等.

  ④等腰梯形的两条对角线相等.

  教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

  [活动5]

  练—练

  例1 (教材P118的例1)略.

  例2 如图,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的长.

  师生共同分析,寻找解决问题的方法和策略.

  例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

  分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

  其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

  问题与情景

  师生行为

  设计意图

  例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求证:BE=CD.

  分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  证明(略)

  例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

  [活动6]

  1.小结

  2.布置作业

  (1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

  (2)已知:如图,

  梯形ABCD中,CD//AB,,.

  求证:AD=AB—DC.

  (3)已知,如图,

  梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

  师生归纳总结:

  解决梯形问题常用的方法:

  (1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

  (2)“作高”:使两腰在两个直角三角形中(图2);

  (3)“延腰”:构造具有公共角的两个等腰三角形(图3);

  (4)“平移对角线”:使两条对角线在同一个三角形中(图4);

  (5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

  尽量多地让学生参与发言是一个交流的过程.

  梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

  学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

八年级数学教案 篇4

  教学目标

  (一)知识与技能目标

  使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.

  (二)过程与方法目标

  通过分式的化简提高学生的运算能力.

  (三)情感与价值目标.

  渗透类比转化的数学思想方法.

  教学重点和难点

  1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.

  2.难点:灵活运用分式的基本性质进行分式化简.

  教学方法:分组讨论.

  教学过程

  (一)情境引入

  1.数学小笑话:

  从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

  2.问:这个富家子弟为什么会犯这样的错误?

  3.分数约分的方法及依据是什么?

  (1)的依据是什么?呢?

  (2)你认为分式与相等吗?与呢?

  (二)新课

  1.类比分数的基本性质,由学生小结出分式的基本性质:

  分式的`分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:

  =,=(其中M是不等于零的整式)

  2.加深对分式基本性质的理解:

  例1下列等式的右边是怎样从左边得到的?

  由学生口述分析,并反问:为什么c≠0?

  解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)

八年级数学教案 篇5

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

  反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

  可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

  并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

  ● 知识与技能目标

  1.理解勾股定理逆定理的具体内容及勾股数的概念;

  2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

  ● 过程与方法目标

  1.经历一般规律的探索过程,发展学生的抽象思维能力;

  2.经历从实验到验证的过程,发展学生的数学归纳能力。

  ● 情感与态度目标

  1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2.在探索过程中体验成功的.喜悦,树立学习的自信心。

  教学重点

  理解勾股定理逆定理的具体内容。

  三、教法学法

  1.教学方法:实验猜想归纳论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

  但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2.课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

  登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:1.直角三角形中,三边长度之间满足什么样的关系?

  2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

  1.这三组数都满足 吗?

  2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

  活动3:反思总结

  提问:

  1.同学们还能找出哪些勾股数呢?

  2.今天的结论与前面学习勾股定理有哪些异同呢?

  3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3.如图1:在 中, 于 , ,则 是( )

  A 等腰三角形 B 锐角三角形

  C 直角三角形 D 钝角三角形

  解答:C

  4.将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望远

  内容:

  1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船转弯后,是沿正西方向航行的。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

  图4 图5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

  2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

  2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

  4.注重对学习新知理解应用偏困难的学生的进一步关注。

  5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入 小试牛刀: 登高望远

八年级数学教案 篇6

  教学目标:

  1.知道负整数指数幂=(a≠0,n是正整数).

  2.掌握整数指数幂的运算性质.

  3.会用科学计数法表示小于1的数.

  教学重点:

  掌握整数指数幂的运算性质.

  难点:

  会用科学计数法表示小于1的数.

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

  教学过程:

  一、课堂引入

  1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:am?an = am+n (m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的'乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n); (5)商的乘方:()n = (n是正整数);

  2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3.你还记得1纳米=10?9米,即1纳米=米吗?

  4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

  二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.

  三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案 篇7

  【教学目标】

  1、了解三角形的中位线的概念

  2、了解三角形的中位线的性质

  3、探索三角形的中位线的性质的一些简单的应用

  【教学重点、难点】

  重点:三角形的中位线定理。

  难点:三角形的中位线定理的证明中添加辅助线的思想方法。

  【教学过程】

  (一)创设情景,引入新课

  1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

  2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

  (1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

  (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的`三角形做怎样的图形变换?

  3、引导学生概括出中位线的概念。

  问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

  启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

  4、猜想:DE与BC的关系?(位置关系与数量关系)

  (二)、师生互动,探究新知

  1、证明你的猜想

  引导学生写出已知,求证,并启发分析。

  (已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

  启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

  启发2:证明线段的倍分的方法有哪些?(截长或补短)

  学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

  证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

  ∴DF∥BC(根据什么?),

  ∴DE 1/2BC

  2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

  (三)学以致用、落实新知

  1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

  2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

  3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

  求证:四边形EFGH是平行四边形。

  启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

  启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

  证明:如图,连接AC。

  ∵EF是⊿ABC的中位线,

  ∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

  挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

  (四)学生练习,巩固新知

  1、请回答引例中的问题(1)

  2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

  (五)小结回顾,反思提高

  今天你学到了什么?还有什么困惑?

八年级数学教案 篇8

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的`纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学教案 篇9

  一、教材分析

  1.教材的地位与作用

  平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.

  本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.

  另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

  2.教学目标:

  知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

  数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

  解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

  情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

  3.教学重点、难点:

  重点:理解并掌握平行四边形的概念及其性质.

  难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

  4.教材处理:

  基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.

  首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.

  然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.

  最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的`教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.

  总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

  二.教学方法与手段

  本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

【热】八年级数学教案12-07

八年级的数学教案15篇12-14

八年级数学教案【推荐】12-04

八年级数学教案【荐】12-06

【精】八年级数学教案12-04

八年级数学教案【精】12-04

【热门】八年级数学教案11-29

【推荐】八年级数学教案12-05