八年级数学教案锦集十篇
作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?下面是小编收集整理的八年级数学教案10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级数学教案 篇1
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的.类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学教案 篇2
一、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
二、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的'四边形是矩形;(×)
(2)有四个角是直角的四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)
(6)对角线互相平分且相等的四边形是矩形;(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明
八年级数学教案 篇3
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的.路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
八年级数学教案 篇4
教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
教学重点与难点
重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
教学准备
卡片及多媒体课件。
教学设计
情境引入
教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的.除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
探究新知
(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。
归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。
应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。
巩固新知教科书第162页练习1及练习2。
学生自己尝试完成计算题,同桌交流。
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。
作业
1。必做题:教科书第164页习题15。3第1题;第2题。
2。选做题:教科书第164页习题15。3第8题
八年级数学教案 篇5
课题:一元二次方程实数根错例剖析课
【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
【课前练习】
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
【典型例题】
例1 下列方程中两实数根之和为2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
错答: B
正解: C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
错解 :B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
【练习】
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k< 时,方程有两个不相等的'实数根。
(2)存在。
如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。
∴当k= 时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。
(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
【小结】
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
【布置作业】
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。
求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
八年级数学教案 篇6
一、回顾交流,合作学习
【活动方略】
活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.
【问题探究1】(投影显示)
飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?
思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)
【活动方略】
教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.
学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.
【问题探究2】(投影显示)
一个零件的.形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?
思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.
【活动方略】
教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.
学生活动:思考后,完成“问题探究2”,小结方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD为直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此这个零件符合要求.
【问题探究3】
甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)
【活动方略】
教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.
学生活动:课堂练习,与同伴交流或举手争取上台演示
八年级数学教案 篇7
教学目标
一、教学知识点:
1.旋转的定义.2.旋转的基本性质.
二、能力训练要求:
1.通过具体实例认识旋转,理解旋转的基本涵义.
2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.
三、情感与价值观要求
1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.
2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.
教学重点:旋转的基本性质.
教学难点:探索旋转的基本性质.
教学方法:
1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。
2、采用多媒体课件辅助教学。
教学过程:
一.巧设情景问题,引入课题
日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?
1.在这些转动的现象中,它们都是绕着一个点转动的.
2.每个物体的转动都是向同一个方向转动.
3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.
4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.
二.讲授新课
在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.
议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.
(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.
(3)可以把OA看作钟表的指针,它OA的'位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.
(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.
(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.
看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?
答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.
因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.
由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.
[例1](课本68页例1)
[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.
解:(见课本68页)
书上68页做一做
三.课堂练习
课本P69随堂练习.
1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.
四.课时小结
五.课后作业:课本P69习题3.4 1、2、3.
六.活动与探究
1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.
结果:旋转现象为:
整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.
整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.
整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.
2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?
过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.
结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.
整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.
整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.
板书设计:略
教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。
八年级数学教案 篇8
教材分析
本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。
学情分析
本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的'乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。
从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。
教学目标
1、知识与技能:
掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。
2、过程与方法:
(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;
(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。
3、情感态度与价值观:
(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;
(2)通过性质的推导体会“特殊。
八年级数学教案 篇9
教学任务分析
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.
解决问题
一、会进行同分母和异分母分式的加减运算.
二、会解决与分式的加减有关的简单实际问题.
三、能进行分式的加、剪、乘、除、乘方的混合运算.
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.
重点
分式的加减法.
难点
异分母分式的加减法及简单的分式混合运算.
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.
通过练习、作业进一步巩固分式的运算.
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间.
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的.加减,提出本节课的主题.
教师通过课件展示问题.学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.
[活动2]
1.提出小学数学中一道简单的分数加法题目.
2.用课件引导学生用类比法,归纳总结同分母分式加法法则.
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习.
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.
学生在教师的引导下,探索同分母分式加减的运算方法.
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.
由两个学生板书自主完成练习,教师巡视指导学生练习.
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.
让学生进一步体会同分母分式的加减运算.
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习.
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式.
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.
让学生体会运用的公式解决问题的过程.
锻炼学生运用法则解决问题的能力,既准确又有速度.
提高学生的计算能力.
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.
提高学生综合应用知识的能力.
[活动5]
1.教师通过课件出2个分式混合运算的小练习.
2.总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简.
3.作业:
a)教科书习题16.2第4、5、6题.
学生练习、巩固.
教师巡视指导.
学生完成、交流.,师生评价.
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.
教师布置作业.
锻炼学生运用法则进行运算的能力,提高准确性及速度.
提高学生归纳总结的能力.
八年级数学教案 篇10
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件.
2.提高对矩形的性质和判别在实际生活中的应用能力.
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.
教学重点:矩形的性质和常用判别方法的理解和掌握.
教学难点:矩形的性质和常用判别方法的综合应用.
教学方法:分析启发法
教具准备:像框,平行四边形框架教具,多媒体课件.
教学过程设计:
一.情境导入:
演示平行四边形活动框架,引入课题.
二.讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)
结论:有一个内角是直角的平行四边形是矩形.
八年级数学上册教案2.探究矩形的性质:
(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角.
(2).探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的'两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①.随着∠α的变化,两条对角线的长度分别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳.)
结论:矩形的两条对角线相等.
(3).议一议:(展示问题,引导学生讨论解决.)
①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能.)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米.求BD与AD的长.
(引导学生分析、解答.)
探索矩形的判别条件:(由修理桌子引出)
(1).想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(2).归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三.课堂练习:(出示P98随堂练习题,学生思考、解答.)
四.新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结.)
五.作业设计:P99习题4.6第1、2、3题.
板书设计:
4.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
三.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级数学教案06-18
八年级数学教案【热门】12-03
【精】八年级数学教案12-04
八年级数学教案【精】12-04
【热】八年级数学教案12-07
八年级数学教案【热】11-29
【荐】八年级数学教案12-03
八年级数学教案【推荐】12-04
【推荐】八年级数学教案12-05