现在位置:范文先生网>教案大全>数学教案>四年级数学教案>四年级数学乘法交换律教案

四年级数学乘法交换律教案

时间:2023-02-24 14:20:28 惠嘉 四年级数学教案 我要投稿

四年级数学乘法交换律教案(精选13篇)

  在教学工作者开展教学活动前,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。来参考自己需要的教案吧!以下是小编精心整理的四年级数学乘法交换律教案,欢迎阅读,希望大家能够喜欢。

四年级数学乘法交换律教案(精选13篇)

  四年级数学乘法交换律教案 篇1

  教学目标:

  1、使学生理解和掌握乘法交换律和结合律。

  2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。

  3、培养学生运用新知识解决实际问题的能力。

  教学重难点:

  1、使学生理解并运用乘法交换律和结合律。

  2、乘法交换律和结合率的运用。

  教学过程:

  一、情境导入,展示目标

  1、谈话导入

  2、口算训练

  50X70= 125 X 8= 40 X 5= 11+7= 4+25=

  70 X 50= 8 X 125= 5 X 40= 7+11= 25+4=

  3、复习乘法算式的各部分名称:

  板书:5 X 4 = 20

  因数,因数积

  4、学习目标要求。

  二、自主学习、合作探究

  领会主题图

  1、观察图意

  2、说说你从图中你了解到了那些信息

  3、根据图中带给我们的信息,可解决那些问题?

  4、出示例5:负责挖坑、种树的一共有多少人?

  (1)、分析数量关系

  (2)、列式计算:4 X 25=100(人)或25 X 4=100(人)

  (3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4 X 25=25 X 4)

  (4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)

  (5)、举例

  (6)、归纳总结:

  交换两个因数的位置,积不变,叫乘法交换律。

  (7)、用字母表示乘法交换律

  A X B=B X A

  说一说A、B可以是那些数?(A、B可以是任何两个不同的数)

  (8)、找一找,主题图中哪个问题可以用乘法交换律来解决。

  师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。

  三、师生互动、点拨升华

  1、出示例6:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?

  (1)、读题,分析数量关系。

  (2)、请同学用不同的方法解答。板书解题思路。

  方法一:(25 X 5)X 2方法二:25 X(5 X 2)

  =125 X 2 =25 X 10

  =250(桶)=250(桶)

  (3)、小组讨论两种解法的相同点和不同点。

  (4)、这两个算式之间可以用什么符号连接?

  板书:(25 X 5)X 2=25 X(5 X 2)

  (5)、观察下面三组算式,说说你发现了什么?

  (15 X 6)X 10()15 X(6 X 10)

  (125 X 80)X 3()125 X(80 X 3)

  (12 X 25)X 4()12 X(25 X 4)

  (6)、归纳总结:

  三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。

  (7)、用字母表示乘法结合律:(A X B)X C=A X(B X C)

  这里A、B、C表示的'是大于或等于0的整数。

  比较、概括、归纳

  比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

  交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。

  四、变式训练、巩固提高

  (1)、填一填:

  75 X 26=()X()8 X 2=2()

  A X B=()X()a X()=15 X()

  125 X 7 X 8=()X()X 7(40 X 15)X [ ]=40 X([ ] X 6)

  25 X(4 X [ ])X([ ] X 4)X 13 2 X 4 X 6 X 5=(4 X 6)X([ ] X [ ])

  (2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?

  五、课堂小结、拓展延伸

  通过本节课的学习,你都有哪些收获?

  四年级数学乘法交换律教案 篇2

  教学内容

  四年级(下册)第61~62页。

  教学目标

  1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

  2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

  3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

  教学过程

  一、复习旧知、导入新课

  1.出示:

  你能在下列的 内填上合适的数吗?

  28+320=320+ ;

  (27+138)+62=27+( + );

  35+ = +35。

  提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

  2.出示:

  在下列○内填上合适的运算符号。

  4○10=10○4 (2○3)○5=2○(3○5)。

  谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

  3.导入新课。

  谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

  【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

  二、举例验证探索规律

  (一)探索乘法交换律。

  1.情景中感知乘法交换律。

  出示例题。(略)

  谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

  学生列式:3×5=15(人)或5×3=15(人)。

  提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

  板书:3×5=5×3。

  【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

  2.举例验证。

  谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

  学生举例。

  引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

  学生交流,教师选择一些等式板书。

  电脑验证大数相乘的结果。

  谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

  3.总结规律。

  讨论:你写出的每一个等式左右两边的'算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

  板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

  提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

  板书:a×b=b×a。

  提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

  【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

  4.回忆乘法交换律在过去学习中的运用。

  谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

  【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

  (二)探索乘法结合律。

  1.初步感知。

  谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

  出示例题。(略)

  谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

  组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

  2.引导比较。

  提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

  提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

  板书:(5×3)×4=5×(3×4)。

  3.举例验证。

  谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

  组织交流,教师有选择地板书一些等式。

  4.总结规律。

  讨论:

  (1)你发现等号两边的算式中什么不变,什么变了?

  (2)你能从这些算式中发现什么规律?

  师生共同归纳乘法结合律。

  板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

  谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

  板书:(a×b)×c=a×(b×c)。

  【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

  四年级数学乘法交换律教案 篇3

  课题一:乘法的意义和乘法交换律

  教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1—5题。

  教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点:乘法的意义和乘法交换律

  教学难点:用乘法交换律验算乘法

  教具准备:把下面复习中的题目写在小黑板上,把例1的.插图放大成挂图。

  教学过程:

  一、复习

  教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

  教师出示复习题。

  1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?

  2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3.小荣家养鸭45只,养的鸡是鸭的3倍,小荣家养鸡多少只?

  4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  先让学生默读题目,然后教师提问:

  “上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

  教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

  二、新课

  1.教学例1。

  出示例1的插图,再提问:

  “要求盘里的一共有多少个鸡蛋可以怎样求?”

  “还可以怎样求?”

  学生回答后教师板书:

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  “乘法算式 5乘以6表示什么?”(6个5相加)

  “乘法算式中的被乘数5是加法算式中的什么数?”(相同的加数。)

  “乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)

  “解答这道题用加法计算简便,还是用乘法计算简便?”

  “求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

  “你能说出乘法是什么样的运算吗?”

  教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

  “乘法算式中乘号前面的数叫什么数?表示什么?”

  “乘法算式中乘号后面的数叫什么数?表示什么?”

  “被乘数和乘数又叫什么数?”

  教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。

  2.教学乘数是1和0的乘法。

  (1)教学一个数和1相乘。

  教师在黑板上写出三个算式:1×3、3×1、1×1。

  “1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。

  “3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。

  “1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1 不能相加,1乘以1就表示1个1还是1,算式是1×1=1。

  “这三个乘法算式都和哪个数有关系?”(都和1有关系)

  下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

  6×1= 1×8= 1×10= 123×1=

  “谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。

  教师边说边板书:一个数和1相乘,仍得原数。

  (2)教学一个数和0相乘。

  教师在黑板上写出三个算式0×3 = 3×0 = 0×0=

  “0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3 = 0表示3个0相加的和是0。

  “3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。板书:3×0=0

  “0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

  “这三个算式都和哪个数有关系?”(都和0有关系)

  “一个数和0相乘它们的积有什么特点?”

  教师边说边板书,一个数和0相乘,仍得0。

  3.教学乘法交换律。

  让学生再看例2的插图,然后教师提问:

  “要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)

  “比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

  教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

  “12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

  “400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

  “100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

  “通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

  学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。

  “谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a

  “大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。

  三、巩固练习

  1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。

  2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

  四、作业

  练习十三的第1、2、5题。

  四年级数学乘法交换律教案 篇4

  教学要求:

  1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

  3.增强合作意识,激发学生学习数学的兴趣。

  教学过程:

  一、猜谜引入

  1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

  生:(积极举手,低声喊)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

  2.提问:用字母如何表示加法交换律、结合律呢?

  适时板书:a+b=b+a a+b+c=a+(b+c)

  3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

  [评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

  二、猜测验证

  1.猜一猜:乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:

  2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  [评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

  4.交流。

  (1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

  提问:有没有不同意见?指名让刚才说乘法没有交换律的.学生发言。

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

  提问:你能用自己的语言描述一下乘法交换律吗?

  生:两个数相乘,交换乘数的位置,积不变。

  师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

  师:和你们说的有什么不同?

  生1:我们说的是乘数,但书上说的是因数。

  生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

  师:会用字母表示吗?板书:ab=ba)。

  电脑出示练习十七第2题。

  师:请你判别一下,有没有运用乘法交换律?并说明理由。

  [评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

  (2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。

  生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

  生6:我们是用算式来说明的,如:(3467)23=34状6723)。

  提问:同学们能用自己的语言描述一下乘法结合律吗?

  生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  师:你说得很准确,有什么好方法帮助记忆?

  生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

  生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

  师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)

  [评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

  5.比较加法运算定律和乘法运算定律。

  师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

  生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

  生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

  [评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]

  三、运用

  1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

  生:我们验算乘法时就应用了乘法的交换律。

  2.基本练习。

  3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

  869=( )

  [评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]

  四、小结。(略)

  四年级数学乘法交换律教案 篇5

  教学内容:加法交换律和乘法交换律

  教学目标:

  1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

  2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。

  教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,

  渗透归纳猜想的数学思想方法。

  教学难点:归纳猜想的数学思想方法渗透。

  教学过程:

  一、导入阶段:

  出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了

  问:从图中你能获得哪些数学信息?

  你还能提出哪些数学问题?

  二、探究阶段:

  1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?

  师:谁能说出两道加法算式中各部分的名称?

  提问:仔细观察一下,这两个算式有什么相同点和不同点?

  (相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)

  师:因为8+18=2618+8=26所以8+18=18+8

  师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。

  (1)根据我们举的例子你发现了什么?(小组交流)

  提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?

  归纳:两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。

  (2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)

  例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?

  加法交换律用字母表示:a+b=b+a

  (3)竖式计算74+641

  师:运用加法交换律,我们还可以验算加法的.计算结果是否正确。

  74验算:641

  +641+74

  715715

  小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。

  2.投影演示:

  (1)图中小箱里共有几罐果汁?6×3=183×6=18

  师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。

  (2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?

  每一组等式的左右两边又有什么联系?

  师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)

  小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。

  (3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。

  (4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?

  板书:a×b=b×a

  三、运用阶段:

  1.根据加法交换律填数

  ()+270=270+80400+500=()+()()+56=()+44a+()=b+()

  2.根据乘法交换律,在()里填上适当的数

  34×71=()×()25×976=976×()45×()=55×()303×786=()×303()×▲=()×■()×54=54×37()×()=c×Da×()=c×a

  3.竖式计算

  64验算:27

  ×27×64

  四、总结:

  今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。

  板书设计:

  加法交换律和乘法交换律

  8+18=263×6=18

  18+8=266×3=18

  8+18=18+83×6=6×3

  加法交换律:a+b=b+a乘法交换律:a×b=b×a

  四年级数学乘法交换律教案 篇6

  【教学目标】

  1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

  2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  3、会用乘法分配律进行一些简便计算。

  【教学重点】

  自主发现乘法分配律,并能用字母表示。

  【教学难点】

  发现并让学生自己归纳乘法分配律

  【课前准备】

  口算练习题,幻灯片

  【教学过程】

  一、新知导入

  师:请同学们进行口算练习(指名回答)

  5×2=25×2=

  5×4=25×4=

  15×2=16×5=

  15×4=45×2=

  75×4=125×8=

  师:请同学们观察这一组口算练习有什么特点。

  生:他们的结果都是整十整百整千的数。

  师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。

  师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)

  二、新知探索

  师:同学们玩过玩具积木吗?

  生:玩过。

  师:你会用积木搭些什么呢?

  学生回答自己用积木搭过的物体。

  师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)

  师:你能看出老师搭的是什么形状吗?

  生1:正方体。

  生2:不对,是长方体。

  师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。

  (师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4

  从前面看:5×4×3

  从侧面看:3×4×5)

  师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?

  生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。

  师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)

  生:用小括号把5×4括起来。

  (板书:(5×4)×3=3×(5×4))

  师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)

  师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)

  师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)

  (学生汇报之后教师板书学生的举例,3、4个即可)

  师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的`共同点吗?

  师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)

  师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。

  师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?

  在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)

  以后,我们可以用这样的方法去发现更多的规律。

  三、新知应用

  (1)练习

  (42×4)×5=42×(4×□)

  (35×2)×5=35×(□×5)

  (28×2)×5=

  (47×25)×4=47×(□×□)

  师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)

  (2)课件出示:

  38×25×4

  49×125×8

  (带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)

  (3)让学生观察一开始板书的三组式子:3×5×4

  5×4×3

  3×5×4

  师:观察第一组和第三组式子,有什么发现?

  生:5×4和5×4位置改变了。

  师:没错,那么这2个式子的结果相同吗?

  生:相同

  师;你能再举几个类似的例子吗(学生举例)

  师:其实这也是数学中的一个重要运算定律

  四年级数学乘法交换律教案 篇7

  教学目标

  1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  借助实际问题,进一步体会加乘法交换律和结合律。

  教学难点:

  用乘法交换律和结合律整理算式。

  预设过程

  一、复习引入

  1、前面我们学习了哪些加法运算定律?你能说一说吗?

  2、教师根据学生的回答板书(用字母表示)

  3、猜测:乘法中会有什么运算定律?你能猜一猜是怎样的吗?

  4、揭题

  二、自主学习

  1、自学书P33-35

  2、反馈:你们学懂了什么?

  (1)乘法交换律是怎样的?你能说一说吗?

  你能用字母表示吗?在哪些地方运用到它?

  (2)乘法结合律是怎样的?你能用你喜欢的方法表示吗?

  3、提问:你们还在什么困难?

  引导学生质疑、解决。

  4、比较沟通:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你们发现了什么?(交换律:都是两个数相加、相乘,交换位置,和(积)不变;结合律:都是三个数相加、相乘,前面两个数相加(乘),也可以把后面两个数相加(乘),和(积)是不变的')

  三、巩固运用

  1、口算:练习六第1题

  2、针对练习:根据运算定律在方框里填上合适的数。

  3、做一做:第1题,你有什么想法?

  4、解决问题:做一做第2题

  四、总结:

  你们在什么收获?

  五、作业布置:

  1、《作业本》

  2、102×1398×13

  作业设计

  课堂作业本P14

  口算训练P15

  教学反思:

  本节课让学生通过自学,效果非常好,节时高效。由于这节课的内容和上节课的内容有很多相似之处,采用让学生自学的方法,学生倍感兴趣,他们时而点一点,时而圈一圈,不仅掌握了本节课的知识,他们还提出了问题:如果是四个数相乘,能够运用乘法结合律先把中间两个数相乘吗?通过讨论,学生发现了即便是更多的数,也可以把中间两个数先乘。

  四年级数学乘法交换律教案 篇8

  教材分析

  学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。

  1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方

  本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。

  学情分析

  乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。它是由学生经过自己探索得到的,在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。

  教学目标

  1,使学生理解和掌握乘法交换律,并能运用它进行验算。

  2,借助观察、比较、概括等方法培养学生的分析推理能力。

  3,培养学生运用新知识解决实际问题的能力。

  教学重点和难点

  教学重点:使学生理解并运用乘法交换律。

  教学难点:乘法交换律的熟练使用。

  教学过程

  一,猜谜引入

  1,猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。”

  让学生回答谜底(纽扣)

  师:你为什么会想到纽扣?

  生:(因为扣错纽扣了,衣服穿出去会让人笑话)

  师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?

  (要求举例说明,并用字母表示)

  2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?

  学生:可能有乘法交换律和乘法结合律。

  师:你们怎么会想到有乘法交换律和乘法结合律的?

  学生:(根据加法中的运算定律来猜的)

  师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,

  这份勇气是值得肯定的也是值得表扬的',那么你们认为什么是乘法交换律,什么是乘法结合律呢?

  (让学生说一说,能说多少就多少)

  二,验证猜想

  验证乘法交换律

  1,师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?

  你们想不想自己来亲自验证一下呢?

  好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。

  (要求:独立思考,想出自己的验证方法,把它写下来)

  每人都把自己的想法告诉自己的合作伙伴。

  比一比,看谁的验证方法最好,让他作为组代表向全班汇报。

  2,学生分组研究,教师巡视指导。

  3,汇报

  学生可能出现的情况:

  (1)我们小组经过讨论认为乘法有交换律,比如:3×5=5×3,6×2=2×6等等,两个因数的位置变了,但它们的积不变.

  (2)我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的结果是相等的.

  (3)我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人?可以列成算式:4×9=36,也可以用9×4=36来计算.这就是说4×9=9×4,因此乘法和加法一样有交换律.

  (4)根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七二十八能算4×7=28,7×4=28.

  (5)我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.

  (6)解决问题时,一个问题可以列两个算式,.

  (7)看图列式时,一个图也可以列两个算式..

  (教师根据学生发言板出算式)

  师:(总结方法)有没有不同意见?(如有不同意见的,请认为乘法没有交换律的同学发言)

  师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的,你们一样很了不起.

  师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗?

  (两个数相乘,交换两个因数的位置,积不变)

  你们能用字母来表示这个运算定律吗?板书:a×b=b×a

  三,课堂练习

  第35页做一做

  四,课堂总结

  今天的学习你有什么收获?需要注意什么问题?

  四年级数学乘法交换律教案 篇9

  教学内容:

  人教版小学数学四年级下册第24---25页例题,及做一做。

  教学目标:

  1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

  3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。

  教学重点:

  探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

  教学难点:

  乘法结合律的推导过程。

  教学用具:

  课件

  教学过程:

  一、创设情境,生成问题

  1、猜谜引入

  猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

  生:(积极举手)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。

  出示:(1)根据运算定律在下面的()里填上适当的数。

  48+___=a+___

  61+28+72=61+(___+72)

  718+(282+6)=(718+___)+___

  (b+132)+768=___+(_____+768)

  (2)下面各题怎样计算简便就怎样计算。

  78+29+22。”79+145+21

  师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)

  师:怎么用字母如何表示加法交换律、结合律呢?

  板书:a+b=b+aa+b+c=a+(b+c)

  3、设置疑问,引入新课。

  加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?

  二、探索交流,解决问题。

  活动一:探索乘法交换律

  1、猜一猜:乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:……

  2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  4、交流。

  (1)生1:我们小组经过讨论认为乘法有交换律。比如:2×3=3×2,0×8=8×0等等。两个因数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个因数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5×8=32,也可以用8×5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。

  师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300×

  师:你能用自己的语言描述一下乘法交换律吗?

  生:两个数相乘,交换因数的位置,积不变。

  师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

  师:会用字母表示吗?板书:a×b=b×a。

  5、师:学习乘法交换律有什么作用?

  生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。

  活动二:探索乘法结合律。

  师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的'号召。

  1、出示例题2:

  同桌讨论,你们是怎样计算的?

  生1:先算出一共种了多少棵。

  (25×5)×2=125×2=250(人)

  生2:先算每组要浇多少桶水。

  25×(5×2)=25×10=250(人)

  2、全班交流

  (1)师:我们来观察两位同学的做法,你有什么发现?

  比较等号两边的算式,有什么相同点和不同点?

  生1:结果相等。

  生2:第二个算式中有括号,第一个算式中没有。

  (2)猜想:是不是具备这种形式的两个算式结果都相等?这会不会是乘法中的一个规律?

  生1:是。

  生2:可能是。

  ……

  师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)

  生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。

  师:同学们觉得呢?---可以。

  师:通过一组算式就能验证吗?

  生:不能,要多举几个例子。

  师:说得真好。下面就来验证一下。

  (3)学生举

  比较这几组等式,你发现了什么规律,把你的发现与同桌交流。

  师:能用自己的语言描述一下你发现的规律吗?

  结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)

  师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?

  (4)师:怎样用字母表示乘法结合律?

  板书:(a×b)×c=a×(b×c)

  (5)师:有什么好方法帮助记忆?

  生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。

  师:这个记忆方法确实很好,我们大家一起来试一试。

  三、巩固应用,内化提高。

  师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。

  1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。

  15×16=16×()

  (60×25)×  =60×(  ×8)

  125×(8×  )=(125×  )×14

  3×4×8×5=(3×4)×(  ×  )

  25×7×4=  ×( ×4)

  同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。

  2、计算23×15×25×37×2

  放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

  通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。

  师:运用了乘法的运算律,计算时你有什么体会?

  3、思考题:用简便方法计算。

  36×25125×32

  例。6=6×300

  学生的方法很多:36×25=25×4×9=5×6×5×6=

  四、回顾整理,反思提升

  通过这节课的学习,你有什么收获想和大家分享一下呢?

  板书设计:

  乘法运算律

  乘法交换律乘法结合律

  3×5=5×3(25×5)×2=25×(5×2)

  7×8=8×7(12×5)×4=12×(5×4)

  9×8=8×9(35×8)×7=35×(8×7)

  a×b=a×b(a×b)×c=a×(b×c)

  四年级数学乘法交换律教案 篇10

  教学内容 :课本34页例1、例2。

  教学目标

  1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  教学难点:

  1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。

  2、能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

  教学过程

  一、自主学习

  (一)出示自学提纲

  1、乘法交换律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  2、乘法结合律的`内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  3、比较加法交换律与乘法交换律,加法结合律与乘法结合律,你发现了什么?

  (学生在自学过程中,教师巡回指导,并告诉学生在看不懂的地方要做上标记)

  (二)学生自学

  (三)自学检测

  计算下面各题,怎样简便就怎样计算。

  23×4×5 8×(125+11) 2×289×5

  二、合作探究

  1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)

  2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)

  (1)在运用乘法运算定律进行计算时应注意什么?

  (2)你会用简便方法计算下列各题吗?

  45×12 125×16 250×64

  三、达标训练

  1、下列各式运用了乘法的交换律,对吗?为什么?

  100×9=9×100 2×18=2×18 a+b=b+a

  2、先口算,再把得数相同的两个算式用等号连接起来。

  (6+4)×5 6×4+4×5

  (8+12)×4 8×4+12×4

  8×(7+3) 8×7+8×3

  3、在下列方框中填上适当的数。

  30×6×7=30×(□×□)

  125×8×40=(□×□)×□

  4、用简便方法计算。

  69×125×8 25×43×4 13×50×4 25×166×4

  课堂小结:通过本节课的学习,你都学会了哪些内容?你有哪些收获?你还有疑问吗?

  四、堂清检测

  1、判断。

  (1)4×(25×3)=(4×25) ×3 ( )

  (2)7×(18×40)=7×(40×18) ( )

  (3)(7×8)×125×15=7×(8×125)×15 ( )

  2、计算。

  (1)13×50×4

  (2)25×166×4

  (3)8×5×125×40

  (4)125×32×5

  3、解决问题。

  每袋有5个乒乓球,每排有4袋,放了2排,一共有多少个乒乓球?

  板书设计

  乘法交换律和乘法结合律

  (1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?

  25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)

  25×4=4×25 =125×2 =10×25

  (学生举例) =250(桶) =250(桶)

  (25×5)×2=25×(5×2)

  (学生举例)

  交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,

  这叫做乘法交换律。 积不变。这叫做乘法结合律。

  a×b=b×a (a×b)×c=a×(b×c)

  四年级数学乘法交换律教案 篇11

  教学目标

  1、经历加法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

  2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发展应用意识。

  教学重难点

  教学重点:理解并掌握加法交换律和乘法交换律的意义以及运用。

  教学难点:会用符号或字母表示加法交换律和乘法交换律。

  教学过程

  一、练习导入、感受交换的好处

  首先出示加法和乘法的计算题让学生快速口算出答案,接着给出两个复杂的算式。现在还能马上口算出答案吗?针对这两个算式你有什么想法?

  二、合作探究,探索新知

  1、将加法和乘法算式同时呈现,让学生一组一组观察,每组中的`两个算式有什么相同和不同的地方?为什么可以把等号连起来?你还发现了什么?

  2、通过模仿创造出几组加法和乘法算式,加以验证。观察教师的例子、自己仿写的以及书本中淘气和笑笑写的算式,和同伴交流自己的发现。

  3、总结;课件出示内容;

  4、寻找生活中的事例解释所发现的规律。

  5、我会接着追问:关于交换律的算式和事例学生们能举的完吗?你们能创造一个更简单的方法来表达发现的规律吗?

  6、选择方法进行投影对比,让学生解释自己的方法,P23在对比评价中得出更简便的字母表示法(板贴a+b=b+a;a.b=b.a)这里要注重说清楚ab各表示什么,以及两个运算律的异同。

  三、巩固规律

  规则是我说算式,学生说交换后的算式,适时加入减法和除法,在学生产生冲突时继续追问:a+b=b+a;a.b=b.a那么a-b=b?a÷b=?。

  四、深化练习,拓展提高

  1、结合下面的例子说明等式为什么成立。通过现实背景理解交换律的实际意义。

  2、运用规律填一填,了解学生对交换律的掌握情况。

  3、计算下列各题,并运用规律进行验算,通过比较,发现利用交换律在计算中可以选择符合习惯的方式列竖式,还具有验算的作用,

  4、接着出示课始的复杂运算鼓励学生运用所学的交换律使问题简单化。

  五、全课小结

  说说本节课有哪些收获?

  四年级数学乘法交换律教案 篇12

  设计说明

  1.注重培养学生自主合作探究的能力。

  《数学课程标准》指出:自主探究、合作交流是学生学习数学的重要方式。在合作交流中探究加法交换律和乘法交换律的意义,让学生从交流中得出结论,这样既尊重了学生学习的主体地位,又增强了学生合作探究能力的培养,学生不仅学会了运用已学的运算律来解决问题,随机渗透了类推、迁移的数学思想,也让学生在探究的过程中进一步加深了对加法交换律和乘法交换律的意义的理解。

  2.注重知识的运用。

  《数学课程标准》强调:人人都能获得必需的数学。在学生掌握了加法交换律和乘法交换律的基础上,从不同角度、不同层次设计习题,学生经历了解决问题的全过程,充分体验了数学与生活的密切联系,感受了数学的作用与价值。

  课前准备

  教师准备PPT课件

  教学过程

  一复习旧知,导入新课

  出示题目:

  →4+6=6+4

  →3×5=5×3

  师:分别观察这两组式子,请你照样子再写一组。

  设计意图:将加法交换律和乘法交换律同时呈现、同时研究,充分做到了尊重学生的认知规律,给学生创造了一个创新和实践的学习环境,既激发了学生的学习兴趣和探究欲望,又使学生获得了成功的体验。

  二活动探究,获取新知

  1.加法交换律。

  (1)观察算式,发现规律。

  观察第一组算式,说一说你发现了什么。

  预设

  生:两个数相加,交换加数的位置,和不变。

  (2)验证并总结规律。

  师:在4+6=6+4这道算式中,交换了加数的位置,和不变。是不是在所有的'加法算式中,交换加数的位置,和都不会发生改变呢?现在我们就一起来验证一下。请同学们写出几道加法算式并试着交换两个加数的位置,计算它们的结果,验证我们的猜想。

  学生验证,汇报交流,教师总结:两个数相加,交换加数的位置,和不变。这就是加法交换律。

  (3)用字母表示加法交换律。

  师:谁能用字母表示一下加法交换律?

  (abba)

  (4)反馈练习。

  20+30=(  )+(  )

  524+678=(  )+524

  □+(  )=○+(  )

  3+(  )=Y+(  )

  2.乘法交换律。

  (1)观察算式,发现规律。

  师:观察第二组算式,说一说你发现了什么。

  预设

  生:两个数相乘,交换乘数的位置,积不变。

  (2)验证并总结规律。

  师:请每位同学编出乘法算式并试着交换两个乘数的位置,看看它们的结果有没有发生变化。

  学生验证,汇报交流,教师总结:两个数相乘,交换乘数的位置,它们的积不变。这就是乘法交换律。

  (3)用字母表示乘法交换律。

  师:怎样用字母来表示乘法交换律呢?

  (a×bb×a)

  师:这里的ab都可以表示哪些数?

  (学生先在小组内讨论,然后汇报)

  (4)反馈练习。

  10×5=(  )×(  )

  (  )×△=(  )×☆

  C×(  )=F×(  )

  四年级数学乘法交换律教案 篇13

  教学目的:

  1、理解乘法交换律和结合律,能运用运算定律使计算简便

  2、培养学生的分析、比较、综合能力以及初步的抽象概括能力

  3、培养学生的探究意识和问题解决能力

  4、通过学生的自主学习,激发学生学习数学的兴趣。

  教学重点:理解乘法交换律、结合律及简便运算的方法。

  教学难点:抽象的语言表述。

  教学设想:本教材是在学生已经掌握了乘法的意义并且对乘法的交换律、结合律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想;所以整个教学过程要求以学生自主学习为主,通过学生的观察、验证、归纳、类比等数学学习形式,让学生去感受数学问题的探索性和挑战性。同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。

  本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,引导学生观察、思考并发现算式的联系。

  在新课展开阶段,注重学生动手操作,让学生在独立思考、出题验证的基础上进行小组交流、探求规律,使学生感受到数学的发展是一个充满着观察、试验、归纳的探索过程,同时培养了学生与他人合作能力。在整个知识探索的过程阶段,重视学生的体验,通过各种方法的比较、体会和欣赏,感受到运用运算定律的好处,使学生自然而然地产生运用运算定律进行简算的欲望,培养了学生的优化意识。

  在巩固练习阶段,教师没有给出统一的要求,而是让学生选择自己最喜欢的方式进行计算,充分给学生以自主权,诶学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的'思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”的新教学理念。

  教学过程:

  一、情境引入、发现特征

  1、 ① 用鸡蛋盘放鸡蛋,(如图)一盘可以放多少个鸡蛋?

  ② 阳光小区有楼房8幢,每幢12层,每层6户,共有多少户?

  (让学生在练习本上独立地用自己喜欢的方式解题)

  2、汇报所写的算式,并说出你的想法?

  3、研究算式的特征。

  ① 观察 5×6=30(个) 6×5=30(个)

  (6×12)×8=576(户) 6×(12×8)=576(户)

  问题:这两组算式分别有什么特征?你发现了什么规律?

  ② 交流:每个同学过观察、分析和眼,把自己的想法相互交流、取长补短。

  ③ 汇报:让部分同学向全班汇报你研究的结果。

  5×6 = 6×5 (6×12)×8 = 6×(12×8)

  二、举例验证、得出定律

  1、是不是类似这样的算式都有这些特征呢?以四人小组为单位一起来验证。

  活动建议:

  ① 每人自己出题验证

  ② 四人小组中交流验证题,并选一题写在黑板上。

  2、小组活动

  3、大组汇报、得出定律

  ① 观察各小组出题,找一找每组题有什么规律?引导出乘法交换律和结合律

  ② 让学生说一说什么是乘法交换律、结合律。

  ③ 如果用a、b、c表示任意的自然数,乘法交换律、结合律怎么表示?

  a ×b =b ×a (a×b )×c=a ×(b×c)

  三、运用定律、进行简算

  1、出示算式:8×3×125 25×37×4

  让学生运用今天所学的知识写出与它们相等的式子

  2、比较同学们所写的式子,你最欣赏的是哪一种?为什么?你有什么体会?

  3、让学生用今天所学的知识,用自己最喜欢的方式计算下面各题?

  396×25×4 125×19×8 8×25×125×4 25×28 125×32

  4、校对讲评、对不同方法进行评价

  四、巩固练习

  1、是不是所有的乘法都能运用运算定律进行简算呢?

  出示:能简算的打“√”,并说出简算的第一步。

  25×34×4( ) 8×36×125( ) 43×25×9 ( )

  35×64 ( ) 24×125 ( ) 36×25 ( )

  小结:在什么情况下能够简算。

  2、作业:怎样算简便就怎样算。

  25×195×4 125×17×8 13×25×4 125×56

  72×125 25×125×4×9×8 25×48×5

【四年级数学乘法交换律教案】相关文章:

四年级数学乘法交换律教案06-13

四年级数学乘法交换律教案6篇06-13

乘法交换律教学反思04-04

交换律数学教案02-23

数学乘法教案02-27

“运算律”乘法交换律、结合律数学四年级上学期教案03-09

小学数学乘法教案01-17

数学口算乘法教案01-09

数学小数乘法教案03-23