现在位置:范文先生网>教案大全>数学教案>七年级数学教案>数学七年级上册教案

数学七年级上册教案

时间:2022-11-01 13:52:47 小花 七年级数学教案 我要投稿

2022人教版数学七年级上册教案(精选18篇)

  作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,借助教案可以让教学工作更科学化。教案要怎么写呢?下面是小编为大家整理的2022人教版数学七年级上册教案,仅供参考,大家一起来看看吧。

  数学七年级上册教案 篇1

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的.位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

  数学七年级上册教案 篇2

  教 案

  第一章 有理数

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  夯实基础

  (1)序号为几的零件最接近标准?

  ④-(-) 0.025.

  第2课时 加法运算律

  教学目标:

  1.能运用加法运算律简化加法运算.

  2.理解加法运算律在加法运算中的作用,适当进行推理训练.

  教学重点:如何运用加法运算律简化运算.

  教学难点:灵活运用加法运算律.

  教与学互动设计:

  (一)情境创设,导入新课

  思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.

  (二)合作交流,解读探究

  计算:20+(-30)与(-30)+20两次得到的和相同吗?

  得出结论:20+(-30)=(-30)+20

  换几组数去试:得到加法交换律:a+b= (学生填).

  其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)

  计算:(1)[8+(-5)]+(-4);

  (2)8+[(-5)+(-4)].

  得出结论:加法结合律:(a+b)+c= .

  【例1】计算:

  16+(-25)+24+(-35)

  【例2】课本P20例3

  说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.

  总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.

  (三)应用迁移,巩固提高

  【例3】 利用有理数的加法运算律计算,使运算简便.

  (1)(+9)+(-7)+(+10)+(-3)+(-9)

  (2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

  (3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)

  【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

  (1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

  (2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

  (四)总结反思,拓展升华

  本节课我们探索了有理数的`加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.

  (五)课堂跟踪反馈

  夯实基础

  1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

  A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

  B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

  C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

  D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

  2.计算:(-2)+4+(-6)+8+…+(-98)+100.

  提升能力

  3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

  4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

  (1)问收工时距A地多远?

  (2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?

  第3课时 有理数的减法

  教学目标:

  1.经历探索有理数减法法则的过程,理解有理数减法法则.

  2.会熟练进行有理数减法运算.

  教学重点:有理数减法法则和运算.

  教学难点:有理数减法法则的推导.

  教与学互动设计

  (一)创设情景,导入新课

  观察温度计:

  你能从温度计看出4℃比-3℃高出多少度吗?

  学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

  按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.

  (二)动手实践,发现新知

  观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

  结论:减去-3等于加上-3的相反数+3.

  (三)类比探究,总结提高

  如果将4换成-1,还有类似于上述的结论吗?

  先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.

  计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

  又因为(-1)+(+3)=2 ②,

  由①②有(-1)-(-3)=-1+(+3) ③,

  即上述结论依然成立.

  试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

  让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.

  再试:把减数-3换成正数,结果又如何呢?

  计算9-8与9+(-8);15-7与15+(-7)

  从中又能有新发现吗?

  让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.

  归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.

  减法法则:减去一个数,等于加上这个数的相反数.

  用字母表示:a-b=a+(-b).

  (在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

  (四)例题分析,运用法则

  【例】计算:

  (1)(-3)-(-5); (2)0-7;

  (3)7.2-(-4.8);(4)-3-5.

  (五)总结巩固,初步应用

  总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

  教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

  数学七年级上册教案 篇3

  1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

  进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  分析题目中的数量关系,用式子表示数量关系.

  (设计者: )

  一、创设情境 明确目标

  青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

  (1)2 h行驶的路程是多少?3 h呢?t h呢?

  (2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

  (3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

  二、自主学习 指向目标

  自学教材第54至55页,完成下列问题:

  1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

  (1)列车2 h行驶的路程为__200__km.

  (2)列车3 h行驶的路程为__300__km.

  (3)列车t h行驶的路程为__100t__km.

  2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

  三、合作探究 达成目标

  用字母表示数

  活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

  (2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

  (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

  (4)用式子表示数n的相反数.

  【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

  【小组讨论】用字母表示数有什么意义?

  【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的.某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

  【针对训练】见“学生用书”.

  用字母表示简单的数量关系

  活动二:阅读教科书例2中的四个问题,思考:

  顺水行驶时,船的速度=________+________;

  逆水行驶时,船的速度=________-________.

  解答过程见教材第55页例2的解答过程.

  【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

  【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

  【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.

  注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

  2.字母和数字相乘时,省略乘号,并把数字放到字母前;

  3.出现除式时,用分数的形式表示;

  4.结果含加减运算的,需要带单位时,式子要用“()”;

  5.系数是带分数时,带分数要化成假分数.

  【针对训练】见“学生用书”.

  四、总结梳理 内化目标

  1.用字母表示数的意义.

  2.用含有字母的式子表示数量关系的意义.

  3.用含有字母的式子表示数量关系时要注意的问题.

  实际问题―→用字母表示数―→用字母表示数量关系

  《2.1整式》同步练习含答案

  1. 其中长方形的长为a,宽为b.

  (1)阴影部分的面积是多少?

  (2)你能判断它是单项式或多项式吗?它的次数是多少?

  《2.1整式》课后练习含答案

  知识要点

  1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

  (1)不含加减运算;

  (2)可以含乘、除、乘方运算,但分母中不能含有字母.

  2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

  3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

  4.整式:单项和多项式统称整式.

  数学七年级上册教案 篇4

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的`点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

  数学七年级上册教案 篇5

  单元教学内容

  1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

  2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系

  (2)数轴能反映数的性质、

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数

  (4)数轴可使有理数大小的比较形象化

  3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

  4、正确理解绝对值的概念是难点

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零

  (3)两个互为相反数的绝对值相等,即│a│=│-a│

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0

  三维目标

  1、知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

  (4)会利用数轴和绝对值比较有理数的大小

  2、过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

  3、情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

  重、难点与关键

  1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

  2、难点:准确理解负数、绝对值等概念

  3、关键:正确理解负数的意义和绝对值的意义

  课时划分

  1、1 正数和负数 2课时

  1、2 有理数 5课时

  1、3 有理数的加减法 4课时

  1、4 有理数的乘除法 5课时

  1、5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1、1正数和负数

  第一课时

  三维目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的`概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪、

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量。

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

  六、巩固练

  课本第3页,练习1、2、3、4题

  数学七年级上册教案 篇6

  【学习目标】:

  1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:正数和负数概念

  【教学过程】:

  一、知识链接:

  1、小学里学过哪些数请写出来:

  2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的'需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

  (2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P2的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的数叫做 。

  2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第1,2题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ( )

  A.0既是正数,又是负数

  C.0是最大的负数

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

  其中最高处为_______地,最低处为_______地.

  3.“甲比乙大-3岁”表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【课后作业】P5第1、2题

  数学七年级上册教案 篇7

  【教学目标】

  1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

  2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

  3、养成学生积极主动的学习态度和自主学习的方式。

  【重点难点】

  重点:认识点、线、面、体的几何特征,感受它们之间的关系。

  难点:在实际背景中体会点的含义。

  【教学准备】

  圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

  【教学过程】

  一、创设情境

  多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

  设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

  二、讨论(动态研究)

  课件演示:灿烂的'星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

  观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.

  让学生举出更多的“点动成线、线动成面、面动成体”的例子。

  小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

  设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

  三、讨论(静态研究)

  教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

  让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

  四、探索

  1、课本112页观察,并回答它的问题。

  引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

  2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

  这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

  让学生自己体会并小组讨论得出点、线、面、体之间的关系。

  五、作业

  1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

  2、阅读教科书第119页的实验与探究,并思考有关问题。

  数学七年级上册教案 篇8

  一、教材分析

  1、教材的地位和作用

  课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

  2、教学目标

  根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

  (1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的.数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

  (2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

  (3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

  3、重点和难点

  (1)重点:培养学生的数感和统计观念。

  (2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

  二、学情分析

  我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

  三、教法和学法分析

  枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

  四、教学形式和课前准备

  本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

  五、教学过程分析

  教学过程设计意图说明

  新课引入

  资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?

  (2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

  探究新知活动一:

  阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

  (1)地球上的水资源和淡水资源分布情况怎么样?

  (2)我国农业和工业耗水量情况怎么样?

  (3)我国不同年份城市生活用水的变化趋势怎么样?

  (4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

  学生阅读资料,通过小组合作、讨论的形式完成活动一。

  活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

  (1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

  (2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

  (3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

  (4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

  (5)你还可以得到哪些信息?

  (教师巡视,指导各小组开展调查实验活动)

  活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

  课堂小结:

  1.当前水资源状况,

  2.节约水资源带来的价值,

  3.节约水资源的办法

  布置作业

  整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

  通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

  数学七年级上册教案 篇9

  【知识与技能】

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.

  2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.

  【过程与方法】

  通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.

  【情感态度】

  通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.

  【教学重点】

  理解算术平方根的概念.

  【教学难点】

  根据算术平方根的概念正确求出非负数的算术平方根.

  一、情境导入,初步认识

  教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.

  问题1求出下列各数的平方.

  1,0,(-1),-1/3,3,1/2.

  问题2下列各数分别是某实数的平方,请求出某实数.

  25,0,4,4/25,1/144,-1/4,1.69.

  对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.

  由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.

  22=4,(-2) =4,故平方为4的数为2或-2.

  问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?

  分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.

  《6.1.2平方根》课堂练习题

  2.(绵阳中考)±2是4的(A)

  A.平方根B.相反数

  C.绝对值D.算术平方根

  3.下面说法中不正确的是(D)

  A.6是36的平方根B.-6是36的平方根

  C.36的平方根是±6 D.36的平方根是6

  4.下列说法正确的是(D)

  A.任何非负数都有两个平方根

  B.一个正数的平方根仍然是正数

  C.只有正数才有平方根

  D.负数没有平方根

  《6.1平方根》课时练习含答案

  15.下面说法正确的是( )

  A.4是2的平方根

  B.2是4的算术平方根

  C.0的算术平方根不存在

  D.-1的平方的.算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

  数学七年级上册教案 篇10

  一:说教材:

  1.教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  2.教育目标

  (1)、知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)、过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)、情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  3.教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二:说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三:说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四:师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五:说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1.全年哪几个月是亏损的?哪几个月是的'盈利的?

  2.各月亏损与盈利情况又如何?

  3.如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

  盈利多少?

  4.你能将亏损情况与盈利情况用算式列出来吗?

  (5)通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

  (三):归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六:说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

  数学七年级上册教案 篇11

  垂线

  [教学目标]

  1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

  2.掌握点到直线的距离的概念,并会度量点到直线的距离。

  3.掌握垂线的性质,并会利用所学知识进行简单的推理。

  [教学重点与难点]

  1.教学重点:垂线的定义及性质。

  2.教学难点:垂线的画法。

  [教学过程设计]

  一.复习提问:

  1、叙述邻补角及对顶角的定义。

  2、对顶角有怎样的性质。

  二.新课:

  引言:

  前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

  (一)垂线的定义

  当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  如图,直线AB、CD互相垂直,记作,垂足为O。

  请同学举出日常生活中,两条直线互相垂直的实例。

  注意:

  1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

  2、掌握如下的推理过程:(如上图)

  反之,

  (二)垂线的画法

  探究:

  1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

  2、经过直线l上一点A画l的垂线,这样的`垂线能画出几条?

  3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

  画法:

  让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

  注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

  (三)垂线的性质

  经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

  性质1过一点有且只有一条直线与已知直线垂直。

  练习:教材第7页

  探究:

  如图,连接直线l外一点P与直线l上各点O,

  A,B,C,……,其中(我们称PO为点P到直线

  l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

  性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

  简单说成:垂线段最短。

  (四)点到直线的距离

  直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  如上图,PO的长度叫做点P到直线l的距离。

  例1

  (1)AB与AC互相垂直;

  (2)AD与AC互相垂直;

  (3)点C到AB的垂线段是线段AB;

  (4)点A到BC的距离是线段AD;

  (5)线段AB的长度是点B到AC的距离;

  (6)线段AB是点B到AC的距离。

  其中正确的有()

  A。 1个B。 2个

  C。 3个D。 4个

  解:A

  例2如图,直线AB,CD相交于点O,

  解:略

  例3如图,一辆汽车在直线形公路AB上由A

  向B行驶,M,N分别是位于公路两侧的村庄,

  设汽车行驶到点P位置时,距离村庄M最近,

  行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

  练习:

  1.

  2.教材第9页3、4

  教材第10页9、10、11、12

  小结:

  1.要掌握好垂线、垂线段、点到直线的距离这几个概念;

  2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

  3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

  数学七年级上册教案 篇12

  学习目标

  1.掌握多项式、多项式的项及其次数,常数项的概念。

  2.确定一个多项式的项、项数和次数。

  3.由单项式与多项式归纳出整式概念。

  4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

  重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

  难点:多项式的次数。

  学法指导

  从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

  《2.1.3多项式》同步四维训练含答案

  新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

  (1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

  (2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

  《2.1.2多项式》课时练习含答案

  1.下列说法中正确的`是( )

  A.多项式ax2+bx+c是二次多项式

  B.四次多项式是指多项式中各项均为四次单项式

  C.-ab2,-x都是单项式,也都是整式

  D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

  2.如果一个多项式是五次多项式,那么它任何一项的次数( )

  A.都小于5 B.都等于5

  C.都不小于5 D.都不大于5

  3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

  A.a10+b19 B.a10-b19

  C.a10-b17 D.a10-b21

  4.若xn-2+x3+1是五次多项式,则n的值是( )

  A.3 B.5 C.7 D.0

  5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

  6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

  7.多项式的二次项系数是.

  8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

  9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

  10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

  (1)请把游戏最后丁所报出的答案用整式的形式描述出来;

  (2)若甲取的数为19,则丁报出的答案是多少?

  数学七年级上册教案 篇13

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的'数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________。

  (2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________。

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(—3)×(—3)×(—3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

  6、拓展思维知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

  数学七年级上册教案 篇14

  教学目标和要求:

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  教学重点和难点:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1、 列代数式

  (1)若正方形的边长为a,则正方形的面积是 ;

  (2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;

  (3)若x表示正方形棱长,则正方形的体积是 ;

  (4)若m表示一个有理数,则它的相反数是 ;

  (5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

  2、 请学生说出所列代数式的意义。

  3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

  由小组讨论后,经小组推荐人员回答,教师适当点拨。

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

  二、讲授新课:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的`单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

  2.练习:判断下列各代数式哪些是单项式?

  (1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

  (加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

  4.例题:

  例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

  ①x+1; ② ; ③ ④- a2b。

  答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;

  ③是,它的系数是,次数是2; ④是,它的系数是- ,次数是3。

  例2:下面各题的判断是否正确?

  ①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥ r2h的系数是 。

  通过其中的反例练习及例题,强调应注意以下几点:

  ①圆周率是常数;

  ②当一个单项式的系数是1或-1时,1通常省略不写,如x2,-a2b等;

  ③单项式次数只与字母指数有关。

  5.游戏:

  规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

  (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

  6.课堂练习:课本p56:1,2。

  三、课堂小结:

  ①单项式及单项式的系数、次数。

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

  四、课堂作业: 课本p59:1,2。

  板书设计:

  《单项式》 1.单项式的定义: 2.例1: 例2: 学生练习:

  教学后记:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。

  数学七年级上册教案 篇15

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的'图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

  数学七年级上册教案 篇16

  一、三维目标。

  (一)知识与技能。

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

  (二)过程与方法。

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

  (三)情感态度与价值观。

  培养学生主动探究、合作交流的意识,严谨治学的学习态度。

  二、教学重、难点与关键。

  1、重点:去括号法则,准确应用法则将整式化简。

  2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

  3、关键:准确理解去括号法则。

  三、教具准备。

  投影仪。

  四、教学过程,课堂引入。

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的'式子含有括号,那么该怎样化简呢?

  五、新授。

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 ①

  冻土地段与非冻土地段相差100t—120(t-0.5)千米 ②

  上面的式子①、②都带有括号,它们应如何化简?

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

  数学七年级上册教案 篇17

  学习目标:

  1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛

  2、数学思考:体会数学符号与对应的思想。

  3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

  重点:进一步理解正、负数及零表示的量的意义。

  难点:理解负数及零表示的量的意义。

  课前准备

  卷尺或皮尺

  教学流程安排

  活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。

  活动2、活动安排 使学生进入问题情境,加深对负数的理解。

  活动3、举例说明 提高解决实际问题的能力。

  活动4、巩固练习 掌握正数和负数。

  教学过程设计

  活动1

  1、 给出一组数,请学生说说哪些是正数、负数。

  2、 学生举例说明正、负数在实际中的应用。

  师生行为及设计意图

  通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。

  活动2

  1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

  2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)

  师生行为

  1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。

  2、各小组派一名同学汇报完成的情况。

  设计意图

  通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。

  活动3

  问题展示

  1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。

  2、 2001年 商品进出口总额比上年的变化情况是:

  美国减少6.4%% , 德国增长1.3%,

  法国减少2.4% , 英国减少3.5%,

  意大利增长0.2 %, 中国增长7.5%,

  师生行为及设计意图

  在学生已初步掌握新知识的.前提下,由问题1 、2提高学生综合解决实际问题的能力。

  活动4

  1、 P6 练习

  2、 总结:这堂课我们学习了那些知识?你能说一说吗?

  3、 作业 P7习题1 .1 4、7、8

  师生行为及设计意图

  教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。

  教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

  学生课后巩固、提高、发展。

  数学七年级上册教案 篇18

  教学目标:

  1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

  2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

  教学重点:

  深化对正负数概念的理解.

  教学难点:

  正确理解和表示向指定方向变化的量.

  教与学互动设计:

  (一)知识回顾和理解

  通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

  [问题1]:“零”为什么既不是正数也不是负数呢?

  学生思考讨论,借助举例说明.

  参考例子:用正数、负数和零表示零上温度、零下温度和零度.

  思考“0”在实际问题中有什么意义?

  归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

  如:水位不升不降时的水位变化,记作:0 m.

  [问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

  (二)深化理解,解决问题

  [问题3]:(课本P3例题)

  【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

  【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,

  法国减少2.4%,英国减少3.5%,

  意大利增长0.2%,中国增长7.5%.

  写出这些国家这一年商品进出口总额的增长率.

  解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的`量,正确地用正负数表示它们.

  巩固练习

  1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

  2.让学生再举出一些常见的具有相反意义的量.

  3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

  中国减少866,印度增长72,

  韩国减少130,新西兰增长434,

  泰国减少3247,孟加拉减少88.

  (1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

  (2)如何表示森林面积减少量,所得结果与增长量有什么关系?

  (3)哪个国家森林面积减少最多?

  (4)通过对这些数据的分析,你想到了什么?

  阅读与思考

  (课本P6)用正数和负数表示加工允许误差.

  问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

  2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

  (三)应用迁移,巩固提高

  1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.

  2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

  3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

  星期一二三四

  增减-5 +7 -3 +4

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  类比例题,要求学生注意书写格式,体会正负数的应用.

  (四)课时小结(师生共同完成)

【数学七年级上册教案】相关文章:

湘教版数学七年级上册教案01-09

七年级上册数学教案12-16

七年级上册数学数轴教案08-30

七年级数学上册教案01-11

人教版七年级数学上册教案11-22

七年级数学上册人教版教案02-13

湘教版七年级上册数学教案01-16

【热门】七年级上册数学教案02-25

【热】七年级上册数学教案02-25

人教版七年级上册数学教案01-06