高一数学教案

时间:2022-11-07 15:27:39 高一数学教案 我要投稿

高一数学教案(15篇)

  作为一名教师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?以下是小编为大家收集的高一数学教案,希望能够帮助到大家。

高一数学教案(15篇)

高一数学教案1

  1、教材(教学内容)

  本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

  2、设计理念

  本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

  3、教学目标

  知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

  过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

  情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

  4、重点难点

  重点:任意角三角函数的定义、

  难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

  5、学情分析

  学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

  6、教法分析

  “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

  7、学法分析

  本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、

  8、教学设计(过程)

  一、引入

  问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?

  问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?

  问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?

  二、原有认知结构的改造和重构

  问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?

  学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数

  学生阅读教材,并思考:

  问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?

  学生讨论并回答

  三、新概念的形成

  问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?

  学生回答,并阅读教材,得到任意角三角函数的定义、并思考:

  问题7:任意角三角函数的定义符合我们高中所学的'函数定义吗?

  展示任意角三角函数的定义,并指出它是如何刻划圆周运动的

  并类比函数的研究方法,得出任意角三角函数的定义域和值域。

  四、概念的运用

  1、基础练习

  ①口算clipXimage008的值、

  ②分别求clipXimage010的值

  小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

  ⅱ)诱导公式(一)

  ③若clipXimage012,试写出角clipXimage002[2]的值。

  ④若clipXimage015,不求值,试判断clipXimage017的符号

  ⑤若clipXimage019,则clipXimage021为第象限的角、

  例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

  若P点的坐标变为clipXimage028,求clipXimage030的值

  小结:任意角三角函数的等价定义(终边定义法)

  例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

  小结:可以采用三角函数模型来刻画圆周运动

  五、拓展探究

  问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?

  思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?

  六、课堂小结

  问题9:请你谈谈本节课的收获有哪些?

  七、课后作业

  教材P21第6、7、8题

高一数学教案2

  一、教材

  首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。

  二、学情

  教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。

  (二)过程与方法

  在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。

  (三)情感态度价值观

  在猜想论证的过程中,体会数学的严谨性。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的.。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。

  五、教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?

  利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

高一数学教案3

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的`知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,

  (三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆C相交;

  当方程组有一组实数解时,直线l与圆C相切;

  当方程组没有实数解时,直线l与圆C相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

  七、板书设计

  我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案4

  一:【课前预习】

  (一):【知识梳理】

  1.直角三角形的边角关系(如图)

  (1)边的关系(勾股定理):AC2+BC2=AB2;

  (2)角的关系:B=

  (3)边角关系:

  ①:

  ②:锐角三角函数:

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函数值是一个比值.

  2.特殊角的三角函数值.

  3.三角函数的关系

  (1) 互为余角的三角函数关系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函数关系.

  平方关系:sin2 A+cos2A=l

  4.三角函数的大小比较

  ①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.

  ②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。

  (二):【课前练习】

  1.等腰直角三角形一个锐角的余弦为( )

  A. D.l

  2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

  3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

  4.已知A为锐角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【经典考题剖析】

  1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.

  2.先化简,再求其值, 其中x=tan45-cos30

  3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比较大小(在空格处填写或或=)

  若=45○,则sin________cos

  若45○,则sin cos

  若45,则 sin cos.

  5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的`规律;

  ⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.

  三:【课后训练】

  1. 2sin60-cos30tan45的结果为( )

  A. D.0

  2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

  A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

  3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

  4.cos2+sin242○ =1,则锐角=______.

  5.在下列不等式中,错误的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()

  7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.

  8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

  9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)

  10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)

高一数学教案5

  [三维目标]

  一、知识与技能:

  1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系

  2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想

  3、了解集合元素个数问题的讨论说明

  二、过程与方法

  通过提问汇总练习提炼的形式来发掘学生学习方法

  三、情感态度与价值观

  培养学生系统化及创造性的'思维

  [教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪

  [教学方法]:讲练结合法

  [授课类型]:复习课

  [课时安排]:1课时

  [教学过程]:集合部分汇总

  本单元主要介绍了以下三个问题:

  1,集合的含义与特征

  2,集合的表示与转化

  3,集合的基本运算

  一,集合的含义与表示(含分类)

  1,具有共同特征的对象的全体,称一个集合

  2,集合按元素的个数分为:有限集和无穷集两类

高一数学教案6

  学 习 目 标

  1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;

  2 能够在空间直角坐标系中求出点坐标

  教 学 过 程

  一 自 主 学 习

  1平面直角坐标系建立方法,点坐标确定过程、表示方法?

  2一个点在平面怎么表示?在空间呢?

  3关于一些对称点坐标求法

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于 轴对称点 ;

  关于 对轴称点 ;

  关于 轴对称点 ;

  二 师 生 互动

  例1在长方体 中, , 写出 四点坐标

  讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?

  变式:已知 ,描出它在空间位置

  例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标

  练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标

  练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标

  三 巩 固 练 习

  1 关于空间直角坐标系叙述正确是( )

  A 中 位置是可以互换

  B空间直角坐标系中点与一个三元有序数组是一种一一对应关系

  C空间直角坐标系中三条坐标轴把空间分为八个部分

  D某点在不同空间直角坐标系中坐标位置可以相同

  2 已知点 ,则点 关于原点对称点坐标为( )

  A B C D

  3 已知 三个顶点坐标分别为 ,则 重心坐标为( )

  A B C D

  4 已知 为平行四边形,且 , 则顶点 坐标

  5 方程 几何意义是

  四 课 后 反 思

  五 课 后 巩 固 练 习

  1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标

  2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系

  ⑴求 坐标;

  ⑵求 坐标;

高一数学教案7

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的'条件、

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并规定0向量与任何向量的数量积为0、

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、

高一数学教案8

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的`急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

高一数学教案9

  教学目标

  1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

  (2)能从数和形两个角度认识单调性和奇偶性.

  (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

  2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

  3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

  教学建议

  一、知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

  二、重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的.转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

  三、教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

  (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高一数学教案10

  【学习目标】

  1、感受数学探索的成功感,提高学习数学的兴趣;

  2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。

  3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。

  【学习重点】三角函数的诱导公式的理解与应用

  【学习难点】诱导公式的推导及灵活运用

  【知识链接】(1)单位圆中任意角α的正弦、余弦的定义

  (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标

  【学习过程】

  一、预习自学

  阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:

  (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的.正弦函数、余弦函数关系

  (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  二、合作探究

  探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。

  (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°);

  探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)

  探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。

  三、学习小结

  (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?

  (2)本节学习涉及到什么数学思想方法?

  (3)我的疑惑有

  【达标检测】

  1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),

  则sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函数值:

  (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,则α的集合S=

高一数学教案11

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的'正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

高一数学教案12

  学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

  (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

  (3)已知一个数列的'递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

  (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

  (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  上述提供的高一数学教案:数列希望能够符合大家的实际需要!

高一数学教案13

  学习目标

  1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;

  2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

  旧知提示 (预习教材P89~ P91,找出疑惑之处)

  复习1:什么叫零点?零点的等价性?零点存在性定理?

  对于函数 ,我们把使 的实数x叫做函数 的零点.

  方程 有实数根 函数 的图象与x轴 函数 .

  如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.

  复习2:一元二次方程求根公式? 三次方程? 四次方程?

  合作探究

  探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.

  解法:第一次,两端各放 个球,低的那一端一定有重球;

  第二次,两端各放 个球,低的那一端一定有重球;

  第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.

  思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点?

  新知:二分法的思想及步骤

  对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).

  反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢?

  ①确定区间 ,验证 ,给定精度

  ②求区间 的中点 ;[]

  ③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );

  ④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④.

  典型例题

  例1 借助计算器或计算机,利用二分法求方程 的近似解.

  练1. 求方程 的解的个数及其大致所在区间.

  练2.求函数 的'一个正数零点(精确到 )

  零点所在区间 中点函数值符号 区间长度

  练3. 用二分法求 的近似值.

  课堂小结

  ① 二分法的概念;②二分法步骤;③二分法思想.

  知识拓展

  高次多项式方程公式解的探索史料

  在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.

  学习评价

  1. 若函数 在区间 上为减函数,则 在 上( ).

  A. 至少有一个零点 B. 只有一个零点

  C. 没有零点 D. 至多有一个零点

  2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是().

  3. 函数 的零点所在区间为( ).

  A. B. C. D.

  4. 用二分法求方程 在区间[2,3]内的实根,由计算器可算得 , , ,那么下一个有根区间为 .

  课后作业

  1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()

  A.-1 B.0 C.3 D.不确定

  2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()

  A.至少有一实数根 B.至多有一实数根

  C.没有实数根 D.有惟一实数根

  3.设函数f(x)=13x-lnx(x0)则y=f(x)()

  A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1, (1,e)内均无零点

  C.在区间1e,1内有零点;在区间(1,e)内无零点[]

  D.在区间1e,1内无零点,在区间(1,e)内有零点

  4.函数f(x)=ex+x-2的零点所在的一个区间是()

  A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

  5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()

  A.m1 B.01 D.0

  6.函数f(x)=(x-1)ln(x-2)x-3的零点有()

  A.0个 B.1个 C.2个 D.3个

  7.函数y=3x-1x2的一个零点是()

  A.-1 B.1 C.(-1,0) D.(1,0)

  8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )

  A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有

  9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  x -1 0 1 2 3

  ex 0.37 1 2.72 7.39 20.09

  A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

  10.求函数y=x3-2x2-x+2的零点,并画出它的简图.

  【总结】

  20xx年数学网为小编在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!

高一数学教案14

  案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的'一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

 三.拓展练习

  练习:若 ,求 的取值范围.

四.小结及作业

  案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高一数学教案15

  教学目标

  1.理解分数指数幂的含义,了解实数指数幂的意义。

  2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

  教学重点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算性质的'理解。

  3.有理数指数幂的运算和化简。

  教学难点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算和化简。

  教学过程

  一.问题情景

  上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

  二.学生活动

  1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

  (1)=(2)=

  2.从上述问题中,你能得到的结论为

  3.(a0)及(a0)能否化成指数幂的形式?

  三.数学理论

  正分数指数幂的意义:=(a0,m,n均为正整数)

  负分数指数幂的意义:=(a0,m,n均为正整数)

  1.规定:0的正分数指数幂仍是0,即=0

  0的负分数指数幂无意义。

  3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.数学运用

  例1求值:

  (1)(2)(3)(4)

  例2用分数指数幂的形式表示下列各式(a0)

  (1)(2)

  例3化简

  (1)

  (2)(3)

  例4化简

  例5已知求(1)(2)

  五.回顾小结

  1.分数指数幂的意义。=(0,m,n)

  无意义

  2.有理数指数幂的运算性质

  3.整式运算律及乘法公式在分数指数幂运算中仍适用

  4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

  练习P47-48练习1,2,3,4

  六.课外作业

  P48习题2.2(1)2,4

【高一数学教案】相关文章:

高一数学教案11-05

高一优秀数学教案09-28

人教版高一数学教案06-10

【热】高一数学教案12-05

【推荐】高一数学教案12-04

高一数学教案【精】11-29

高一数学教案【推荐】11-30

【荐】高一数学教案11-27

高一数学教案【热】12-03

【热门】高一数学教案11-26