现在位置:范文先生网>教案大全>数学教案>五年级数学教案>五年级数学教案

五年级数学教案

时间:2022-11-08 17:00:34 五年级数学教案 我要投稿

五年级数学教案合集15篇

  作为一名教学工作者,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?以下是小编为大家整理的五年级数学教案,仅供参考,希望能够帮助到大家。

五年级数学教案合集15篇

五年级数学教案1

  教学要求使学生初步学会把几个有联系的统计表合编成一个复式统计表,认识复式统计表的意义和作用,并通过教材中有说服力的数据对学生进行爱科学的教育。

  教学重点让学生了解分栏的方法和步骤,看懂表头。

  教学用具投影仪和放大的例3统计表。

  教学过程

  一、创设情境

  1.投影出示。

  兴农小学活动课程四个小组的学生人数。

  数学组:男生14人,女生8人。

  航模组:男生13人,女生4人。

  生物组:男生7人,女生12人。

  美术组:男生12人,女生12人。

  请根据上面的数据填写下面的统计表。

  2.请同学们思考并回答。

  (1)每张统计表能反映出什么情况?

  (2)如果想了解或者比较各个小组的人数情况,用这四张统计表是否方便?有无更好的方法?(让学生分组讨论,说说各自的想法)

  显然用这四张表比较不方便,为了便于比较各小组中男女生参加人数的情况,我们可以把它们合编成一个统计表。

  板书课题:复式统计表

  二、探索研究

  1.小组合作讨论

  (1)把这四张有联系的统计表合编成一个统计表,要反映哪几个方面的情况?

  (要反映两个方面的情况,一个是分组的情况,也就是分几个组;另一个是各组的人数情况,也就是各小组中男、女生参加的人数。)

  (2)怎样划分统计表的栏目才能反映出这两个方面的情况呢?

  (用投影一部分一部分地显示)

  (①表头的竖向分栏中写出四个小组的名称和总计;②表头的横向分栏中写学生性别和合计;③一般统计表的左上角一格(表头)用斜线分成三个部分:右上部分说明横栏的类别;左下部分说明竖栏的类别;中间部分说明右下方的空格是留着填写数据的。)

  2.小组合作实践

  ①让学生翻开书第8页,小组合作填写复式统计表并填写第9页上的第(1)~(4)小题。

  ②填好后回答:合编后的统计表有什么好外?

  三、课堂实践

  做第9页的“做一做”首先让学生口述怎样填写;再让学生独立去填;最后回答:从这张表中你能看到什么?

  四、课堂

  ①今天学习的内容;

  ②编制统计表的'方法和步骤。

  五、课堂作业

  做练习二的第1、3题。

  课后反思:不要怕学生出错,因为谁都可能出错,你在一件事情上越琢磨得多就越容易出错。

  2.求平均数

  课题:求平均数

  教学要求使学生进一步理解求平均数的意义,学会较复杂的求平均数的方法。

  教学重点学会较复杂的求平均数的方法。

  教学用具投影仪(片)

  教学过程

  一、创设情境

  投影显示第13页的复习题,让学生思考并回答:(1)这题要求的是什么?(2)必须要知道什么?(3)怎样列式解答?

  计算的结果能说明什么问题?它有什么用?

  思考:全班同学上美术课每个人都带了些“橡皮泥”做手工用,为了使大家都拥有有等量的“橡皮泥”,我们该用什么办法把我们手中的“橡皮泥”平均一下呢?

  今天这节课我们将继续学习求平均数(板书课题)

  二、探索研究

  小组合作讨论:研究例1。

  1、观察比较:例1与复习题有什么相同处与不同处?

  2、思考并回答:

  (1)这题求的是什么的平均数?

  (2)必须要知道什么?

  (3)你会解答这道题吗?

  (先让学生分小组试着做一做,再选几名学生代表,讲一讲他们是怎样做的,老师将学生说的解题过程板书出来后集体订正)

  ①全班一共投中多少个?28+33+23=84(个)

  ②全班一共有多少人?10+11+9=30(人)

  ③全班平均每人投中多少个?84÷30=2.8(个)

  列成综合算式是

  (28+33+23)÷(10+11+9)=2.8(个)

  答:全班平均每人投中2.8个。

  小组合作学习:研究例2。

  1、观察比较:例1与例2的条件与问题又有什么相同点和不同点?

  2、思考并解答:你能联系例1的解题思路计算出这题的结果吗?

  放手让学生尝试做一做,再讲一讲是怎样做的,老师将学生说的解题过程板书出来,使学生明白:条件与与问题不同,计算方法和步骤也就不同,最后集体订正。

  ①全班一共投中多少个?2.5×12+3×11+3.2×10=95(个)

  ②全班一共有多少人?12+11+10=33(人)

  ③全班平均每人投中多少个?95÷33≈2.9(个)

  列成综合算式是:

  (2.5×12+3×11+3.2×10)÷(12+11+10)

  =95÷33

  ≈2.9(个)

  答:全班平均每人投中2.9个。

  三、课堂实践

  做教材第14页的“做一做”

  四、课堂

  学生今天学习的内容。

  五、课堂作业1、练习三的第2题。2、练习三的第1、3、4题

五年级数学教案2

  教学目标

  1.理解除数是小数的除法的算理,掌握除数是小数的计算法则

  2.培养学生的计算能力

  教学重点

  掌握除数是小数的除法的计算法则

  教学难点

  理解把除数是小数的除法转化为整数除法的道理

  教学过程

  一、铺垫孕伏

  (一)指名板演,集体订正:5628÷67

  (二)演示课件:商不变的性质

  (三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的

  除法该怎样计算呢?这节课我们就来解决这个问题.

  (板书课题:除数是小数的除法)

  二、探究新知

  (一)教学例4

  1.演示课件:一个数除以小数

  2.尝试不同思路(把题里的米数都改写成厘米数来计算)

  56.28米=5628厘米

  0.67米=67厘米

  5628÷67=84(条)

  教师说明:这种方法是正确的,但是有一定的局限性

  3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?

  4.练习:继续演示课件:一个数除以小数

  5.计算除数是小数的除法的关键是什么?转化时以谁为标准?

  6.小结计算方法

  计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数

  点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.

  (二)教学例5

  例5

  10.5÷0.75

  1.学生试算

  2.集体订正

  教师强调:(1)位数不够用“0”补足.

  (2)商的小数点和被除数的小数点对齐.

  3.练习

  51.3÷0.27

  26÷0.13

  (三)总结除数是小数的小数除法的计算法则

  除数是小数的除法,先移动除数的小数点,使它变成整数;除数的.小数点向右

  移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算.

  三、课堂小结

  这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联

  系?通过今天的学习,你有什么收获?

  四、课堂练习

  (一)填空

  除数是小数的除法,先移动_____小数点,使它变成整数;除数的小数点向右移动

  几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;然后按照除数是_____的小数除法进行计算.

  (二)把下面的题变成除数是整数的除法

  4.68÷1.2=□÷12

  2.38÷0.34=□÷□

  5.2÷0.32=□÷32

  161÷0.46=□÷□

  (三)计算下面各题

  6.21÷0.03=

  210÷1.4

  1.104÷2.4

  五、布置作业

  (一)计算下面个题.

  19.76÷5.2

  109.2÷0.42

  8.4÷0.56

  10.8÷4.5

  6.825÷0.91

  25.84÷1.7

  (二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有0.0016千克.鸵鸟的体重是蜂鸟的多少倍?

  六、板书设计

  一个数除以小数

  例4做一条短裤要用布0.67米,56.28米布

  例5计算

  10.5÷0.75

  可以做多少条短裤?

  答:56.28米布可以做84条短裤

  一个数除以小数(二)

五年级数学教案3

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的'情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =()

  (2)2÷9 =()

  (3)7÷8 =()

  (4)5÷12 =()

  (5)31÷5 =()

  (6)m÷n =()n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

五年级数学教案4

  [教学内容]谁打电话的时间长(第7~9页)

  [教学目标]

  1:通过打电话的情景,体会生活中存在着需要用除法是小数的小数除法,去解决问题,进一步体会数字与生活的密切关系。

  2:利用已有知识、经历探索除法是小数的除法计算方法的过程,体会转化的教学思想。3:培养学生良好的思想道德情操,认识小数除法再现实生活中的应用。

  [教学重点]除数是小数的小数除法计算方法。

  [教学难点]商的小数点的位置的确定。

  [教学过程]

  一、温故知新

  竖式计算:

  0.48÷46.3÷7240÷604800÷400

  二、情境激趣,探究新知

  1、课件出示教材情境图,引导学生找出数学信息,并发现数学问题。

  引导学生发现笑笑和淘气打电话,笑笑打国内长途,每分钟0.3元,共花5.1元;淘气打国际长途,每分钟7.2元,共花54元。谁打电话的时间长?

  2、先估计谁打电话的时间长。

  ①小组讨论说说你是怎样估计的;②分组汇报估算过程;③评价和鼓励估算方法的合理性。

  学生估算的方法可能会出现以下情况:①国际长途每分7.2元,大约是国内长途每分0.3元的二十几倍,如果笑笑和淘气打电话的时间相同,那淘气的电话费总价应该是笑笑电话费的二十几倍,但是54元大约是5.1元的10倍,所以笑笑打电话的时间长;②5.1大约有十几个0.3,那么笑笑打电话的时间是十几分钟,而54里没有10个7.2,那么淘气打电话的时间一定不到10分钟,所以笑笑打电话的时间长。

  3、列出算式,解决问题。

  5.1÷0.354÷7.2

  4、自主探索,合作交流。

  学生独立试算5.1÷0.3

  思考:用你认为合理的方法计算;除数是小数是否可以转化成整数?怎样转化?应用了什么规律?

  小组讨论除数是小数除法的计算方法,围绕前面提出的`要求,展开做好记录。全班共同理解小数除法的算理,并进行算法最优化,可能会出现的几种算法:

  把0.3元化成3角,5.1元化成51角,变成了51÷3是我们以前学过的除数是整数的除法,51÷3=17(分)

  把除数0.3变成整数扩大了10倍,要使商不变,被除数也要扩大10倍变成51,被除数的变化随除数的变化而变化。51÷3=17(分)??

  对比几种方法的异同,找出相同点:都运用了转化的思想,把除数变成整数,我们已经学会了除数是整数的除尘,利用已有知识经验解决问题、学习新知识,是很好的学习方法的培养,为学生形成较强的学习能力打下坚实的基础;商不变的规律的应用。5、应用算法,明晰算理。竖式计算57÷7.2=(分)

  教师巡视并对发现的计算中的错误,全班同学一起进行纠错。强调竖式的写法,划去除数的小数点后,除数扩大了10倍,那么被除数也要扩大10倍,就在整数后面添0。你采用的什么方法来检查?(运用估算和乘法来验证计算结果的合理性。)三、巩固练习,拓展提升

  1、完成教材第8页练一练第2题。2、完成教材第8页试一试。3、完成教材第9页练一练第5题。

  4、完成教材第9页练一练第7题。

  [课堂总结]本节课你有什么收获?你想提示大家注意什么问题?[板书设计]

  谁打电话时间长

  笑笑打电话的时间:51÷3=17(分)答:

  淘气打电话的时间:57÷7.2=7.5(分)答:

五年级数学教案5

  课型:新授

  教学内容:教材P5~6例3、例4及练习二第1、9题。

  教学目标

  知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。

  过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。

  情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。

  教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。

  教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。

  教学方法:观察、分析、比较。

  教学准备:多媒体。

  教学过程

  一、复习引入

  1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3

  口算后提问:从14×3和1.4×3的口算中,你有什么发现?

  2.列竖式计算。26×7 1.36×12 30.8×25

  学生独立完成,指名板演,订正时让学生说一说计算的过程。

  3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)

  二、自主探究

  1.创设情境,引入问题。出示教材第5页例3的主题情境图。

  师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)

  师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?

  全班交流,然后说出解决问题的方法。

  师:我们该如何解决问题呢?

  生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。

  师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8

  师:这个式子中,两个因数都是小数,该如何计算呢?

  生1可以用竖式计算:×0.8

  生2:也可以把它们可作整数来计算(下左)。

  师:那么如何求一共需要多少油漆呢?

  生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)

  所以一共需要1.728千克油漆。

  师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?

  学生小组交流讨论,老师加以总结。

  小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。

  师:看一看算式的两个因数中一共有几位小数?积呢?

  生:两个因数中一共有2位小数,积也有2位小数。

  2.探究小数乘法的计算方法。完成P6例4上面的填空。

  (l)组织学生尝试完成教材第5页的“做一做”。

  (2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。

  (3)教学例4。 0.56×0.04

  师:这个算式中的'两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?

  学生讨论,教师板书。

  师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

  师:观察黑板上各题,小组讨论。(出示讨论提纲。)

  讨论提纲:①小数乘小数,我们首先怎样想?

  (把两个因数的小数点去掉,转化为整数乘法。)

  ②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)

  ③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?

  (教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)

  3.根据上面的分析,想想小数乘法是怎样计算的?

  学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。

  生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。

  教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。

  三、巩固练习

  1.不计算,说一说下列各题的积有几位小数。

  2.3×0.4 0.08×0.9 7.3×0.06

  9.1×0. 03 0.25×0.23 45.9×3.5

  提问:怎样判断积有几位小数?

  2.用竖式计算。(教材第6页“做一做”的第1题)

  提问:你是怎样计算0.29×0.07的?

  3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。

  师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。

  师:一个数(0除外)乘大于1的数,积比原来的数大。

  一个数(O除外)乘小于1的数,积比原来的数小。

  四、课堂小结

  师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)

  作业:教材第8~10页练习二第1、9题。

  板书设计:

  小数乘小数

  2.4×0.8=1.92 0.56×0.04=0.0224

  1看、2算、3数、4点

五年级数学教案6

  课型:

  新授

  教学内容:

  教材P7及练习二第3、5、6、7、10题。

  教学目标:

  知识与技能:

  使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

  过程与方法:

  理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

  情感、态度与价值观:

  养成认真计算与及时检验的学习习惯。

  教学重点:

  运用小数乘法的计算法则正确计算小数乘法。

  教学难点:

  正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

  教学方法:

  观察、分析、比较。

  教学准备:

  多媒体。

  教学过程:

  一、复习准备

  1、口算。0.9×6 7×0.08 1.87×O

  0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

  指名学生口算,然后集体订正。

  2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

  (2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

  3、揭示课题:这节课我们继续学习小数乘法。(板书课题)

  二、情景引入

  1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

  学生观察情境图,提取信息:

  所求问题:(鸵鸟的最高速度是多少千米/小时)

  所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)

  思路分析:

  (1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

  (2)追问提高学习新知的兴趣:

  ①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

  ②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

  ③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

  (3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

  让学生独立计算出鸵鸟的最高速度,并集体订正。

  (4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的`?(板书验算,完善课题)

  学生可能会有以下几种验算的方法:

  ①用原式再计算一遍。

  ②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

  ③观察法:观察小数位数或第二个因数比1大还是比1小。

  ④用计算器进行验算。

  师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

  (5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?

  生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

  师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

  师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

  2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

  三、巩固练习

  1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

  2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

  四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

  作业:5、6、7

  课外作业:教材第9页练习二第10题。

  板书设计:

  求一个数的小数倍数是多少及验算

五年级数学教案7

  教学目标:

  1.掌握小数加减法的计算方法,并能用于解决生活中的一些实际问题。

  2.通过自主探究、合作交流,经历探索小数加减法计算方法的全过程,理解算理,体会小数加减法与整数加减法的联系,发展运算、分析、推理能力,积累解决问题的经验。

  3.加强数学知识与日常生活的联系,激发学习兴趣,培养与他人合作的意识,逐步养成独立思考、细心计算的良好习惯。

  教学重点:

  掌握小数加减法的计算方法。

  教学难点:

  理解相同数位上的数才能直接相加减的算理。

  本节课关键性问题:

  1、如何引导学生发现只有相同数位上的数才能直接相加的原因。

  2、如何引导学生将小数加减法与整数加减法进行联系沟通。

  教学准备:

  课件、学习单、实物投影

  过程设计教学过程:

  一.错题引入

  师:同学们,知道我们今天学什么?(出示课题)

  师:之前我们已经学习了简单的小数加减法,所以昨天我做了一次课前调查,这是同学们列的两道竖式:

  师:你认为哪道是对的?

  师追问:为什么这个2不与5相加,而要与6相加呢?

  设计意图:从学生的错例引入,激发孩子的求知欲,为自主探究作好铺垫。

  二.小组合作,自主探究只有相同数位上的数才能直接相加的`原因。

  【关键问题1】如何引导学生发现只有相同数位上的数才能直接相加的原因。

  出示学习单

  小组合作要求:

  (1)组长合理分工,在最短时间内让组员将讨论结果内记录在学习单上。

  (2)小组汇报时按顺序依次发言。

  (3)其他组员可以进行补充和评价。

  (预设生):百分位与百分位加,十分位与十分位加,个位与个位加。

  (预设生):用计数器来表示算法的。

  (预设生):2个一加3个一,6个0.1加2个0.1,5个0.01加0个0.01。

  (预设生):用格子图来解释。

  师:现在你知道为什么这个2不与这个5相加,而要与6相加了吗?

  (预设生):2表示2个0.1,5表示5个0.01.(同时板书)他们的计数单位不同,不能直接相加。

  师追问:现在你们知道为什么这个2不与5相加,而要与6相加吗?

  小结:是的,只有相同数位的数才能相加,也就是计算小数加法的时候我们要做到相同数位对齐。(板书)

  练习:判断一下下面哪道竖式是正确的?

  师:你怎么这么快就判断出来啊!

  (预设生):看看小数点对齐了没有。

  小结:在计算小数加法时要把相同数位对齐只要把小数点对齐就可以了。

  师:那么以后再算小数加法时我们要做到什么?

  (预设生):计算小数加法时,小数点对齐,相同数位对齐,从低位算起。

  设计意图:通过小组合作,生生交流,自主发现相同数位上的数才能直接相加,体验自主探究学习的快乐。

  与整数加法进行比较

  1.【关键问题2】如何引导学生将小数加减法与整数加减法进行联系沟通。

  师:相同数位对齐你有没有觉得很熟悉?在哪里听过。

  出示课件

  小结:在做整数加减法的时候就是要把相同数位对齐才能相加减。原来小数加减法与整数的计算方法是一样的。

  2.回到课前调查引出小数减法

  师:看来同学们,小数加法的问题已经解决了,请再来看看课前调查中的那一道算式:

  师:现在你知道哪道是正确的吗?为什么?

  师:百分位上没有数怎么减?

  师:计算小数减法时有什么好窍门?

  小结:所以以后在计算小数加减法时相同数位对齐了,就与整数加减法的运算规则是一样的。

  设计意图:通过对比整数加法的计算方法,把旧的知识经验迁移到小数加减法上,让学生独立解决小数减法的计算问题。

  练习巩固

  1.校对时借助课件用计数器演示退位过程。

  设计意图:借助开小卡车,调节学习氛围,同时让学生巩固小数点对齐的重要性,通过演示计数器让学生形象地感知退位过程。

  2.你觉得生活中有没有用到小数加减的地方?

  师:这是小马虎的妈妈去超市购物的清单,可是清单的右下角被油渍弄脏了看不清了,你们能帮忙算一算吗?先估一估大约是几元?

  设计意图:通过解决生活中的小数加减法问题,能让学生体会到学习计算的必要性,体会加减计算与生活的密切联系。

  3.在方框上填上运算符号,然后添上小数点,使竖式成立。

  设计意图:进一步让学生感知小数点对齐的本质就是让相同数位上的数相加减。

  三、课堂总结

  谈谈你的收获?

五年级数学教案8

  备课时间:

  xxx年9月25日。

  教学内容:

  练习八7-10题。

  教学目标:

  1、使学生在练习的过程中进一步理解和掌握小数加减法的计算方法以及和整数加减法的关系,能熟练地进行计算。

  2、进一步提高自己的计算能力。

  3、在解决问题的活动中,培养学生与他人合作的意识和能力。

  教学重点:

  进一步理解和掌握小数加、减法的计算方法。

  教学进程:

  一、复习。

  1、口算。

  2、计算并验算。

  3、找出错误的地方。

  学生解决,教师针对学生存在的'错误予以纠正。

  二、练习深化。

  1、练习八第7题。

  学生地理思考解决问题。

  指名回答。

  针对存在的错误予以纠正。

  2、练习八第8题。

  学生独立计算。

  指名板演,教师讲解,纠正错误,予以改正。

  3、练习八的第九题。

  解决前三个问题后,还可以结合统计图的特点,

  引导学生进一步提出:“这一天中哪段时间病人体温上升最快,上升了多少度”,“哪段时间病人体温下降得最快,下降了多少度”等问题,以激发学生解决问题的兴趣。

  4、练习八的第十题:

  可以让学生独立解答前两个问题,并要求说说每题的思考过程,再让学生提出一些不同的问题进行解答。

  三、课后延伸。

  练习八的思考题。

  可以先根据“5.1减去一个两位小数得2.76”,算出作为减数的两个小数应是2.34。再用5.1加上2.34,然后可得到正确的结果。

  四、课堂小结。

  你认为你学的怎么样?能给自己一个评价吗?

  布置作业:补充习题练习。

五年级数学教案9

  一、 单元学习内容的前后联系

  已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。

  本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。

  后续的相关内容:本册第五单元 异分母分数加减;加减混合运算;分数与小数的互化。第十册:分数乘法分数除法

  二、单元编写特点与教学策略

  1、在具体情境中进一步理解分数,体会分数的相对性

  教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。

  在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。

  2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。

  除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。

  3、经历知识的形成过程,探索分数的基本性质

  分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

  探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。

  4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法

  本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的.方法的基础上,学习约分和通分。

  三、从《分数的基本性质》谈教学策略

  “整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。

  (1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。

  (2)部分观察。先引导学生对其中一组数 = = ,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:

  得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。

  接着,引导学生从右向左观察,并练习:

  得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。

  在让学生观察其他几组分数,能得出同样的规律。

  (3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。

五年级数学教案10

  教学目标

  1:了解小数的产生、理解和掌握小数的性质。

  2:初步理解整数、小数、分数之间的联系,掌握相邻两个计数单位间的进率。

  过程和方法

  经历小数的发现、认识过程和必要性,感知知识与生活以及知识之间的密切联系,体验探究发现和迁移推理的学习方法。

  情感态度与价值观

  了解数学知识的产生过程,感受生活中处处有数学并激发学生的学习兴趣,培养动手实践、合作探究的学习的习惯

  重点:在学生初步认识分数和小数的基础上,进一步理解小数的性质,并理解和掌握小数的计数单位及相邻两个单位间的进率。

  难点:理解小数的计数单位和他们之间的进率

  课前准备:课件、电子秤

  教学过程:

  一:创设情境,引出课题

  1、游戏:测一测(师生测)

  (1)在我们生活中还有那些地方看到过小数?

  (2)我们一起来看看老师找的小数。(出示课件1、2)

  2、揭示小数的产生:

  师:像这些在进行测量和计算时,有时不能得到整数的结果,在生活中还有很多,这时我们通常用小数来表示。这节课我们就一起来学习:小数的性质。(板书)

  师:在学习新知识之前我们先来复习下以前学过的东西。(课件展示第3张幻灯片)

  二、探索新知

  (一)教授新知:认识小数表示的`性质

  1、 师出示三个正方体,现在老师想把它平均分成若干分。请看一看,想一想有多少等分?

  2、课件展示把正方体分别平均分成10份、100份和1000份。(课件上要展示出分的过程), 边分边问:平均分成了多少份?(10份、100份、1000份)

  3、现在老师再将每个正方体其中的某些部分涂上颜色。请讨论可以用哪三个小数表示这三幅图中的阴影部分,他们都表示什么意思?(指名回答)

  4、刚才我们总结了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那你认为什么是小数呢?

  5、师总结小数的性质。

  (二)认识计数单位

  (三)整理数位顺序表:

  整数部分最小的计数单位是( ),小数部分最大的计数单位是( ),这两个计数单位之间的进率是( ),每相邻两个计数单位之间的进率是( ).

  三、课堂活动 (口答)

  完成课堂活动第1、4

  四、总结:

  通过这节课的学习,你们有哪些收获?(学生谈本节课收获)

  五、结束语:

  最后老师想送给大家一句话,希望与大家共勉:

五年级数学教案11

  教学目标:

  使学生明确小数连除、除加、除减的运算顺序与整数相同,能灵活地运用学过的定律和有关的规律进行简便计算。

  教学重点:

  教学过程:

  一.1.口算:

  0.1230.360.40.10.01

  0.160.024.50.0338

  0.040.50.750.1513

  2.说说下列各式的运算顺序,并算出结果。

  360454206+1507505-80

  3.用简便方法算

  13456035

  二.新授

  1.谈话引入

  小数的连除、除加、除减的运算顺序和整数一样。(板书课题)

  2.教学例10

  (1)读题、审题、列式。

  9.30.52.4

  问9.30.15表示什么?再除以2.4又表示什么?

  (完成板书)

  :小数连除的'运算顺序与整数相同,从左往右依次计算。

  (2)练习第31页做一做(中)

  做前先讨论:这两题是什么算式?有几步运算?先算什么?再算什么?后指名板演讲评。

  3.在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。

  (1)教学例11

  出示例11,师问:怎样算简便呢?

  学生小组讨论:得出把除数转化成是一位数的连除。(生讲师板书)

  5.635

  =5.675

  =0.85

  =0.16

  :在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。(2)大家练第31页做一做(下)

  4.全课:略

  三.巩固练习

  1.第32页2、3填入书本

  2.课作:第1部分第4题

五年级数学教案12

  设计说明

  1.开门见山,引入新课。

  教学没有固定的形式,一节课如何开头也没有固定的方法。由于教学对象不同、教学内容不同,开头也不会相同。本节课直接拿出计算器,开门见山,明确这节课的学习任务是用计算器探索规律,使学生在新课开始就明确了学习目标,提高了课堂的有效性。

  2.注重开展自主学习。

  别人说十遍不如自己做一遍,学生亲手操作演示的东西,由于有切身实践,往往体会深刻,有助于激发悟性,增强思维力度。缘于上述原因,在每个板块的活动中,都积极为学生主动尝试、交流、讨论等创造条件,为学生探索提供充分的时间和空间,让学生在自主合作、探索交流中发展思维,提高学习能力。让学生经历猜想、验证、交流、总结、应用的过程,层层深入,让学生感受到用计算器探索规律的乐趣,这样才会使课堂生动有趣。此外还重视方法的总结,在学生会用规律写商后,让学生回顾用计算器探索规律的过程,并试着总结用计算器探索规律的方法。

  课前准备

  教师准备:PPT课件、计算器

  学生准备:计算器

  教学过程

  ⊙开门见山,引入新课

  今天的新课,我们请来了一位特别的“朋友”(计算器),有了它,我们的计算既快捷又准确,它还有一个特殊的功能,就是帮助我们发现规律。接下来我们就利用计算器一起来探索数学中的奥秘吧!(板书课题)

  设计意图:开门见山,直接导入,通过利用计算器的好处,让学生带着“特殊功能”这个疑问进入新课。

  ⊙合作探究,总结规律

  1.建立猜想。

  出示例9中的前两题:1÷11 2÷11

  (1)使用计算器。

  先让学生用计算器计算出1÷11的结果。

  (2)根据结果猜想。

  师:通过刚才的计算,我们已经得出1÷11=0.0909…,如果在这道除法算式中,除数11不变,被除数乘2,得到的商会发生怎样的变化?

  学生提出猜想:0.0909…×2=0.1818…,因为除数11不变,被除数1扩大到了原来的2倍,得到的商也应该扩大到原来的2倍。

  2.验证猜想。

  (1)让学生用计算器算出2÷11的商,验证猜想。

  (2)引导学生举例进一步验证猜想。

  猜想:

  ①商是循环小数;

  ②2÷11的结果是1÷11的结果的2倍……

  出示3÷11、4÷11、5÷11,不计算,用发现的规律直接写出这几题的.商,并用计算器验证。

  3.总结规律,运用规律。

  (1)观察各商的特点,寻找规律。

  师:仔细观察这些算式,你还发现了什么规律?

  预设:

  生1:除数不变,被除数与第一题相比分别扩大到原来的2~5倍,商与第一题相比也相应地扩大到原来的2~5倍。

  生2:商都是循环小数,整数部分都为0。

  生3:循环节都是被除数的9倍。

  (2)运用规律。

  请学生根据探究出的规律写出例9中后四题的商。

  4.总结用计算器探索规律的方法。

  用计算器计算

五年级数学教案13

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的`分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学教案14

  教学目标

  1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。

  2、能对以上概念作正确判断,能熟练地把合数分解质因数。

  教学重点、难点

  重点、难点:理解概念,并能熟练运用。

  教具、学具准备

  教 学过程

  备 注

  一、 知识整理与基本练习

  1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。

  6.9÷9111÷3除尽整除

  18÷669÷1

  10÷42.4÷0.8

  反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?

  2、练习:课本P65第1题。

  (1)学生在课本上全体练(1人做在投影片上)

  (2)投影反馈,矫正错误。

  (3)提问:

  A、自然数与整数之间有什么关系?(学生回答后出示投影片)

  B、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?

  C、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?

  D、答:自然数()和()组成,或者由(),()和()组成。

  3、练习,课本P66第4题(学生练习后反馈)

  4、出示:在36、48、84、75、15、210、130、204这些数中,

  (1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。

  (2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。

  (3)说一说,它们各有什么特征?

  5、提问:

  什么叫分解质因数?把课本P65第1题中的合数分解质因数。

  教学过程

  备 注

  (1)生练习(两个做在投影片上)

  (2)反馈,矫正。

  (3)练习:课本P66第6题(学生练习后反馈)

  二、综合练习

  1、填空:(投影片逐题出示,学生先思考,想好后再回答)

  (1)12的'全部约数有(),把72分解质因数是()。

  (2)最小的自然数是(),最小的素数是()最小的合数是(),最小的奇数是(),最小的偶数是()。

  (3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。

  (4)自然数A÷B=4,则A能被B(),B是A的(),4能整除()。

  2、练习:课本P66第5题(学生练习后反馈,说理)

  3、思考题:

  有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:“我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?”你能想出来吗?

  三、课堂作业《作业本》

  四、学生总结

  通过知识整理及填空、选择、判断各种题型的训练,学生进一步掌握了各个概念,并能对各个概念加以区分。

五年级数学教案15

  备课时间:

  xxx年12月11日。

  教学内容:

  复习复式统计表和复式条形统计图,完成“练习与应用”1-3题。

  教学目标:

  1、使学生进一步学习和认识复式统计表,根据收集、整理的数据填写统计表,并能根据统计表中的数据进行简单的分析。

  2、使学生进一步认识复式条形统计图,学习根据收集、整理的数据完成复式条形统计图。

  3、感受数学与生活的密切联系,发展数学应用意识。

  教具准备:

  统计图与统计表

  教学进程:

  一、复习。

  小组讨论:

  这一单元,你学习了那些知识?你有什么收获?

  二、练习与应用。

  1、完成第1题。

  可以让学生根据教材提供的数据独立填表,再进行适当交流。

  要重点指导计算“人均耕地面积”的计算方法。知道根据问题,应该用全果耕地的总公顷数除以总人口数。

  总结,得数大约是0.11公顷。

  2、你知道吗。

  先让学生自由阅读,再交流体会。

  3、完成第2题。

  学生观察后,可以要求说说这里的复式条形图与此前认识的复式条形图有什么不同,体会复式条形图的具体形式是可以变化的`。

  学生填表后,适当可以组织交流,使学生体会我国城乡社会经济正在不断发展、进步。

  4、完成第3题。

  可以先让学生根据复式统计表中的数据独立完成条形统计图,再组织对统计图的观察与分析。

  要启发学生根据对条形统计图的直观观察从整体上评价这两只球队,看出红队的状态不够稳定,而蓝队的水平正在逐步提高。

  三、课堂小结。

  这节课你又收获了什么?

【五年级数学教案】相关文章:

小学数学教案五年级12-14

五年级数学教案08-20

五年级数学教案09-29

五年级上数学教案01-14

五年级教案数学教案12-27

五年级下册数学教案01-04

小学五年级数学教案11-05

五年级数学教案【荐】11-29

【精】五年级数学教案12-04

【推荐】五年级数学教案11-28