现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-11-19 18:35:21 八年级数学教案 我要投稿

八年级数学教案合集15篇

  作为一名人民教师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?以下是小编收集整理的八年级数学教案,欢迎大家分享。

八年级数学教案合集15篇

八年级数学教案1

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯.

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1) 讲解例1。学生分析完成,教师注重完成后的点评。

  例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1= 只要证什么?

  (3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

  (2)讲解例2(投影例2 )

  例2已知:如图AB=DC,AD=BC

  求证:∠A=∠C

  (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

  (2)找学生代表口述证明思路。

  思路1:连接BD(如图)

  证△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的`辅助线写出,再证明。

  例3如图,已知AB=AC,DB=DC

  (1)若E、F、G、H分别是各边的中点,求证:EH=FG

  (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上写出证明,然后选择投影显示。

  证明:(略)

  说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

  例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

  求证:AC=2AE.

  证明:(略)

  学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

  5、课堂小结:

  (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

  在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业:

  a、书面作业P70#11、12

  b、上交作业P70#14 P71B组3

八年级数学教案2

  教学内容

  本节课主要介绍全等三角形的概念和性质.

  教学目标

  1.知识与技能

  领会全等三角形对应边和对应角相等的有关概念.

  2.过程与方法

  经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

  3.情感、态度与价值观

  培养观察、操作、分析能力,体会全等三角形的应用价值.

  重、难点与关键

  1.重点:会确定全等三角形的对应元素.

  2.难点:掌握找对应边、对应角的方法.

  3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

  四张大小一样的纸片、直尺、剪刀.

  教学方法

  采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

  一、动手操作,导入课题

  1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

  2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

  【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

  【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

  学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

  【互动交流】剪出的'多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

  概念:能够完全重合的两个三角形叫做全等三角形.

  【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

  【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

  【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

  【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

  【交流讨论】通过同桌交流,实验得出下面结论:

  1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

  2.这时它们的三个顶点、三条边和三个内角分别重合了.

  3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

八年级数学教案3

  一、学习目标

  1.使学生了解运用公式法分解因式的意义;

  2.使学生掌握用平方差公式分解因式

  二、重点难点

  重点:掌握运用平方差公式分解因式。

  难点:将单项式化为平方形式,再用平方差公式分解因式。

  学习方法:归纳、概括、总结。

  三、合作学习

  创设问题情境,引入新课

  在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的`因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

  如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

  1.请看乘法公式

  左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

  利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式讲解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精讲精练

  例1、把下列各式分解因式:

  (1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;(2)2x3—8x。

  补充例题:判断下列分解因式是否正确。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、课堂练习

  教科书练习。

  六、作业

  1、教科书习题。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

八年级数学教案4

  【教学目标】

  知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

  过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

  情感、态度与价值观

  培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

  【教学重难点】

  重点:掌握用提公因式法把多项式分解因式.

  难点:正确地确定多项式的最大公因式.

  关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  【教学过程】

  一、回顾交流,导入新知

  【复习交流】

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

  【教师归纳】我们把多项式中各项都有的.公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

  二、小组合作,探究方法

  教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  三、范例学习,应用所学

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用简便的方法计算:

  0.84×12+12×0.6-0.44×12.

  【教师活动】引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本115页练习第1、2、3题.

  【探研时空】

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

  六、布置作业,专题突破

  课本119页习题14.3第1、4(1)、6题.

八年级数学教案5

  ●教学目标

  (一)教学知识点

  1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

  2.能根据相似比进行计 算.

  (二)能力训练要求

  1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.

  2.能根据相似比求长度和角度,培养学生的运用能力.

  (三)情感与价值观要求

  通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.

  ●教学重点 相似三角形的定义及运用.

  ●教学难点 根据定义求线段长或角的度数.

  ●教学过程

  Ⅰ.创设问题情境,引入新课

  今天, 我们就来研究相似三角形.

  Ⅱ.新课讲解

  1.相似三角形的定义及记法

  三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF

  其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?

  所以 D、E、F. .

  3.议一议,学生讨论

  (1)两个全等三角形一定相似吗?为什么?

  (2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?

  (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

  结论:两 个全等三角形一定相似.

  两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.

  4.例题

  例1、有一块呈三角形形状 的草坪,其中一边的.长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度数。(2)DE的长.

  5.想一想

  在例2的条件下,图中有哪些线段成比例?

  Ⅲ.课堂练习 P129

  Ⅳ.课时小结

  相似三角形的 判定方法定义法.

  Ⅴ.课后作业

八年级数学教案6

  一、教学目标

  1、认识中位数和众数,并会求出一组数据中的众数和中位数。

  2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

  3、会利用中位数、众数分析数据信息做出决策。

  二、重点、难点和难点的突破方法:

  1、重点:认识中位数、众数这两种数据代表

  2、难点:利用中位数、众数分析数据信息做出决策。

  3、难点的突破方法:

  首先应交待清楚中位数和众数意义和作用:

  中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。

  教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

  在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。

  三、例习题的意图分析

  1、教材P143的例4的意图

  (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

  (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

  (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

  (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

  2、教材P145例5的意图

  (1)、通过例5应使学生明白通常对待销售问题我们要研究的'是众数,它代表该型号的产品销售,以便给商家合理的建议。

  (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

  (3)、例5也反映了众数是数据代表的一种。

  四、课堂引入

  严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

  五、例习题的分析

  教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

  教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

  六、随堂练习

  1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

  1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求这15个销售员该月销量的中位数和众数。

  假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

  2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:

  1匹1.2匹1.5匹2匹

  3月12台20台8台4台

  4月16台30台14台8台

  根据表格回答问题:

  商店出售的各种规格空调中,众数是多少?

  假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

  答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

  2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。

  七、课后练习

  1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是

  2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.

  3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )

  A.97、96 B.96、96.4 C.96、97 D.98、97

  4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:

  温度(℃) -8 -1 7 15 21 24 30

  天数3 5 5 7 6 2 2

  请你根据上述数据回答问题:

  (1).该组数据的中位数是什么?

  (2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?

  答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天

八年级数学教案7

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的`特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

八年级数学教案8

  分式方程

  教学目标

  1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

  2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

  教学重点:

  将实际问题中的等量 关系用分式方程表示

  教学难点:

  找实际问题中的等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

  根据题意,可得方程___________________

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的'时间。

  这 一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

  根据题意,可得方程_ _____________________。

  学生分组探讨、交流,列出方程.

  三.做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

  四.议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、 随堂练习

  (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

  (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

  六、学 习小结

  本节课你学到了哪些知识?有什么感想?

  七.作业布置

八年级数学教案9

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

  反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

  可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

  并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

  ● 知识与技能目标

  1.理解勾股定理逆定理的具体内容及勾股数的概念;

  2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

  ● 过程与方法目标

  1.经历一般规律的探索过程,发展学生的抽象思维能力;

  2.经历从实验到验证的过程,发展学生的数学归纳能力。

  ● 情感与态度目标

  1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2.在探索过程中体验成功的喜悦,树立学习的自信心。

  教学重点

  理解勾股定理逆定理的具体内容。

  三、教法学法

  1.教学方法:实验猜想归纳论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

  但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2.课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

  登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:1.直角三角形中,三边长度之间满足什么样的关系?

  2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

  1.这三组数都满足 吗?

  2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的.理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

  活动3:反思总结

  提问:

  1.同学们还能找出哪些勾股数呢?

  2.今天的结论与前面学习勾股定理有哪些异同呢?

  3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3.如图1:在 中, 于 , ,则 是( )

  A 等腰三角形 B 锐角三角形

  C 直角三角形 D 钝角三角形

  解答:C

  4.将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望远

  内容:

  1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船转弯后,是沿正西方向航行的。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

  图4 图5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

  2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

  2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

  4.注重对学习新知理解应用偏困难的学生的进一步关注。

  5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入 小试牛刀: 登高望远

八年级数学教案10

  【教学目标】

  一、教学知识点

  1.命题的组成.

  2.命题真假的判断。

  二、能力训练要求:

  1.使学生能够分清命题的条件和结论,能判断命题的真假

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

  三、情感与价值观要求:

  1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

  2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

  3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

  【教学重点】准确的找出命题的条件和结论

  【教学难点】理解判断一个真命题需要证明

  【教学方】探讨、合作交流

  【教具准备】投影片

  【教学过程】

  一、情景创设、引入新课

  师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

  新课:

  (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

  1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

  2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

  4.如果一个四边形的对角线相等,那么这个四边形是矩形。

  5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

  师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

  二、例题讲解:

  例1:师:下列命题的条件是什么?结论是什么?

  1.如果两个角相等,那么他们是对顶角;

  2.如果a>b,b>c,那么a=c;

  3.两角和其中一角的对边对应相等的两个三角形全等;

  4.菱形的四条边都相等;

  5.全等三角形的面积相等。

  例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

  2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

  例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

  师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

  教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

  三、思维拓展:

  拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

  教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

  (1)首先给学生介绍欧几里得的《原本》

  (2)引出概念:公理、定理,证明

  (3)启发学生,现在如何证实一个命题的正确性

  (4)给出本套教材所选用如下6个命题作为公理

  (5)等式性质、不等式有关性质,等量代换也看作定理。

  拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

  建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

  练习书p197习题6.31

  四、问题式总结

  师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

  建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

  作业:书p197习题6.32、3

  板书设计:

  定义与命题

  课时2

  条件

  1.命题的结构特征

  结论

  1.假命题——可以举反例

  2.命题真假的判别

  2.真命题——需要证明 学生活动一——

  探索命题的结构特征

  学生观察、分组讨论,得出结论:

  (1)这五个命题都是用“如果……那么……”形式叙述的'

  (2)这五个命题都是由已知得到结论

  (3)这五个命题都有条件和结论

  学生活动二——

  探索命题的条件和结论

  生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

  学生活动三

  探索命题的真假——如何判断假命题

  生:可以举一个例子,说明命题1是不正确的,如图:

  已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

  生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

  生:由此说明:命题1、2是不正确的

  生:命题3、4、5是正确的

  学生活动四

  探索命题的真假——如何证实一个命题是真命题

  学生交流:

  生:用我们以前学过的观察、实验、验证特例等方法

  生:这些方法往往并不可靠

  生:能够根据已知道的真命题证实呢?

  生:那已经知道的真命题又是如何证实的?

  生:那可怎么办呢?

  生:可通过证明的方法

  学生分小组讨论得出结论

  生:命题的结构特征:条件和结论

  生:命题有真假之分

  生:可以通过举反例的方法判断假命题

  生:可通过证明的方法证实真命题

八年级数学教案11

  课题:一元二次方程实数根错例剖析课

  【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

  【课前练习】

  1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

  【典型例题】

  例1 下列方程中两实数根之和为2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  错答: B

  正解: C

  错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

  例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  错解 :B

  正解:D

  错因剖析:漏掉了方程有实数根的前提是△≥0

  例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

  错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的'取值范围是 -1≤k<2

  错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

  正解: -1≤k<2且k≠

  例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

  错解:由根与系数的关系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

  =2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

  正解:m = 2

  例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

  错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范围是m≠±1且m≥ -

  错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

  正解:m的取值范围是m≥-

  例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

  错解:∵方程有整数根,

  ∴△=9-4a>0,则a<2.25

  又∵a是非负数,∴a=1或a=2

  令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

  ∴方程的整数根是x1= -1, x2= -2

  错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

  正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

  【练习】

  练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

  (1)求k的取值范围;

  (2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

  解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

  ∴当k< 时,方程有两个不相等的实数根。

  (2)存在。

  如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

  ∴当k= 时,方程的两实数根x1、x2互为相反数。

  读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

  解:上面解法错在如下两个方面:

  (1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

  (2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

  练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

  解:(1)当a=0时,方程为4x-1=0,∴x=

  (2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

  ∴当a≥ -4且a≠0时,方程有实数根。

  又因为方程只有正实数根,设为x1,x2,则:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

  【小结】

  以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

  1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

  2、运用根与系数关系时,△≥0是前提条件。

  3、条件多面时(如例5、例6)考虑要周全。

  【布置作业】

  1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

  2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

  求证:关于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

  考题汇编

  1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

  2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

  (1)若方程的一个根为1,求m的值。

  (2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

  3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

  4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

八年级数学教案12

  教学目标:

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的'边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

  二、导入新课:

  1、提出问题:(书P68页的问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值.

  一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

  也就是,在等式 =a (x0)中,规定x = .

  2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

  3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。

  4、例1 求下列各数的算术平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、练习

  P69练习 1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

八年级数学教案13

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:

  体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:

  对于平均数、中位数、众数在不同情境中的应用。

  教学方法:

  归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的.权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:

  复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:

  复习题B组、C组(选做)

八年级数学教案14

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的.画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案15

  菱形

  学习目标(学习重点):

  1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

  2.运用菱形的识别方法进行有关推理.

  补充例题:

  例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

  例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

  四边形AFCE是菱形吗?说明理由.

  例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

  (1)试说明四边形AECG是平行四边形;

  (2)若AB=4cm,BC=3cm,求线段EF的长;

  (3)当矩形两边AB、BC具备怎样的`关系时,四边形AECG是菱形.

  课后续助:

  一、填空题

  1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

  2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

  且DE∥BA,DF∥ CA

  (1)要使四边形AFDE是菱形,则要增加条件______________________

  (2)要使四边形AFDE是矩形,则要增加条件______________________

  二、解答题

  1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

  2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直吗?为什么?

  (2) 四边形ABCD是菱形 吗?

  3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

  4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

  ⑴求证:ABF≌

  ⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.