六年级数学下册教案15篇
作为一名教职工,总归要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?下面是小编帮大家整理的六年级数学下册教案,欢迎阅读,希望大家能够喜欢。
六年级数学下册教案1
中位数
教学目标
1.理解中位数在统计学中的意义,会求中位数。
2.了解中位数与平均数的异同,会根据数据的具体情况合理选择统计方法,体会各自的特点和作用。
教学重点
中位数意义的理解及求法。
教学难点
对一组数据的具体情况及所要分析的问题作出何种统计方法的合理选择。
教学准备
实物投影仪等。
教学过程
第一课时
一、谈话导入
前面我们研究了有关可能性的统计知识,这节课我们将研究新的统计知识。
二、探究新知
1.认识中位数
出示五(1)班第3组同学掷沙包成绩统计表:
问:你觉得他们掷沙包的一般水平应该是多少米?
姓名 李明 陈东 刘云 马刚 王明 张炎 赵丽
成绩/米 36.8 34.7 25.8 24.7 24.6 24.1 23.2
(生可能会估计在23-25米之间或说用平均数来表示等。)
引导如何计算平均数并计算出平均数27.7。
问:平均数与估计数有什么差别?为什么会出现这样的情况?
引导观察统计表中的每个数据与平均数之间的差别。(发现有两个同学的成绩太高,而大多数同学的成绩都低于平均值。说明用平均数来表示第3组同学掷沙包的一般水平不太合适。)
问:那用怎样的数据表示比较合适呢?为什么?(组织学生相互交流并汇报。)
小结: 24.7这个数据,比它前面3个数小,比它后面3个数大,像这个位置处于一组数据正中间的数,我们就把它叫这组数的中位数。(板书)
2.理解中位数
中位数可以对事物的大体趋势进行判断和掌控,它不受偏大或偏小数据的影响,适合反映事物的一般水平。像第3组同学掷沙包成绩所用的中位数24.7,说明这一小组中超过一半的同学掷沙包成绩都能达到和超过这个水平。
问:
①某班同学数学单元测试成绩的中位数是88,请说说这个数据说明什么问题?
②绍兴县某月的空气污染指数的中位数是65(50--100为良),又说明了什么问题?
问:
①如果把25.8改为31.4,那么这组数据的平均数是否发生变化?是多少?中位数呢?为什么?
②如果把24.1改为22,平均数和中位数是否发生变化?为什么?
③如果把25.8改为24.4,平均数和中位数是否发生变化?为什么?
④如果把24.1改为24.8,平均数和中位数是否发生变化?为什么?
小结:一组数据中,每个数据的`大小变化,都会引起平均数的变化,平均数与每个数据的大小有关,与数据的排列位置变化无关;中位数有时与数据的大小变化无关(其所在数据的排列位置不变时),有时与数据的大小变化有关(其所在数据的排列位置变化时),中位数的变化与其所在一组数据的位置排列顺序变化有关。小顺序排列后,最中间的数据就是中位数,它不受偏大偏小数据的影响。
3.求中位数
出示五(2)班7名男生的跳远成绩统计表:
问:用什么数来表示这组男生跳远的一般水平合适?为什么?
姓名 李志强 陈文 王文贤 赵军 张鹏 刘卫华 于国庆
成绩/米 3.06 2.90 2.74 3.52 2.83 2.89 2.78
(1)分别求出平均数和中位数。并问中位数怎样求?(学生自主学习交流得出:是把数据按从大到小或从小到大的顺序排列求中位数。)独立完成求平均数与中位数。
(2)把求得的平均数、中位数与各数据比较,用哪个数代表这组数据的一般水平更合适?
(3)如果2.89m及以上为及格,有多少名同学及格了?超过半数了吗?
(4)如果再增加一个杨冬同学的成绩2.94m,这组数据的中位数又是多少?
根据学生出现争议问:你求出中位数了吗?怎么办呢?
(通过前后题目的数据数对比)组织学生讨论小结:当一组数据有双数个时,中位数是中间两个数的平均数。
学生独立计算该中位数。
4.新知小结:
观察比较上面几道题的中位数与平均数,说说中位数与平均数的异同。
三、课堂总结
通过这节课的研究与学习,你又有了什么收获?
六年级数学下册教案2
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例.
(2)一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的`两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
省略
六年级数学下册教案3
教学目标
1.经历认识圆柱展开图和探索表面积计算方法的过程。
2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。
3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。
教学重点
圆柱体表面积公式的推导。
教学难点
运用表面积公式计算实际图形的表面积。
教具准备
圆柱表面展开示意图。
教学过程
一、读题导入
1.齐读课题。
师:看到这个课题,你们想到了哪些与之相关的知识。
生:长方体和正方体的表面积;圆柱的底面和侧面。
2.复习相关知识
(1)什么是长方体、正方体的表面积?它们是怎么计算的?
二、探索新知
1.课件出示圆柱,揭示圆柱的表面积公式
师:根据刚才的讨论,你能说说应该要求出圆住的`表面积,必须哪些条件吗?并说说理由。
生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。
2.教学圆柱的表面积
(1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。
(2)谁还记得圆柱侧面积的计算公式。
学生:圆柱的侧面积=底面周长高
(3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。
(4)议一议:怎样求圆柱的表面积?学生讨论。
学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。
(4)教学例题:
出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。
(5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。
三、练习
试一试
(1)提出试一试的问题,让学生尝试计算。
(2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。
四、巩固
练一练1:则由学生独立完成。
练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。
练一练3:先指导学生明确解决问题的思路,再自主解答。
五、家庭作业
自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。
六年级数学下册教案4
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:
负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的.负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。
六年级数学下册教案5
一、创设情境,再现知识
谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?
学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)
这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?
【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。
二、梳理归网,学习内化
1.回顾知识,自主梳理
①自己回顾每个概念的意义,同位交流。
②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)
【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。
2.交流展示,引导建构
①全班交流整理结果(展台展示,师及时点拨纠正存在问题)
②哪些是方程?哪些是等式?
6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13
③你会解这些方程吗?解方程的根据是什么?(等式性质)
选择几个解一解。(展台展示交流)
如何判断方程解的是否正确?在解方程时要注意一些什么?
④复习简易方程的解法、步骤及检验方法、书写格式。
【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。
3.提炼方法,认知内化
(1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)
(2)出示第101页第4题及改编题
20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?
①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?
②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?
引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的思考过程变得简单)
【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的'方法解答。
三、综合应用,整体提高
1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么
①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?
②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)
2.我是“精选细算“小英才
课本101页5—8题(学生独立做,集体订正)
3.智力冲浪
课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)
【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。
四、总结提升,知情共融。
这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?
六年级数学下册教案6
教学内容:
课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。
教学目标:
1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
3、培养和解决简单的实际问题的能力,体会生活中处处有数学。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
渗透生活即数学的教学思想。
课前准备:
课件
教学过程:
一、认识、了解纳税
教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。
二、教学新课
1、教学例7。
出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?
指名学生读题后全班学生再次读题。
提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?
学生尝试练习。
学生可能有下面两种方法:
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
集体订正,教师板书算式。说说这题你是根据什么来列式的?
强调:求应纳税额实际上就是求一个数的`百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额
2、做“试一试”。
提问:这道题先求什么?再求什么?
生:先求5000元的20%是多少?再求实际获得的奖金。
学生板演与齐练同时进行,集体订正。
3、完成练一练后全班交流。
三、反馈练习
只列式不计算。
1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?
2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?
3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?
四、课堂总结
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
五、布置作业
练习十六第1—3题。
六年级数学下册教案7
第一单元:认识负数
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、让学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、让学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的`看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
六年级数学下册教案8
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
学 具:小刀,用土豆做成的一个圆柱体。
教学过程:
一、复习铺垫
1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?
2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?
二、设疑揭题
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的`欲望。
三、新课教学
1.探究推导圆柱的体积计算公式。
(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh
(6)要用这个公式计算圆柱的体积必须知道什么条件?
[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]
2.教学例4
(1)出示例4。
(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?
(3)请一名同学板演,其余同学在作业本上做。
(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5
(1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]
四、新知应用
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)V=sh=5O2.1=105
答:它的体积是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的体积是0.01051(立方米)。
五、全课总结
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
六、学生作业
练习十一的第l 、2题。
[总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]
六年级数学下册教案9
教学内容:
课本第79——80页例3和“练一练”,练习十三第3-5题。
教学目标:
1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。
2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,
增强学生应用数学的意识。
教学重难点:
用分数乘法和减法解决一些稍复杂的实际问题。
课前准备:
课件
教学过程:
一、复习导入
王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?
全校的三好学生共有96人,其中男生占3/8,女生有多少人?
学生独立解答后,让学生说说想的'过程。
二、教学例3
出示题目,要求学生默读。
指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。
从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?
问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?
教师指导学生画线段图。
教师再根据线段图引导学生分析题意。
“要求今年有多少班,可以先算什么?
请你试着把这道题做一下。
教师找出不同的解法进行板演,并让学生说说思路。
三、完成”练一练“
1、做第1题。
(1)引导学生画线段图理解题意
(2)看线段图分析
(3)学生独立完成,指名板演,集体评讲。
2、做第2、3题。
(1)让学生独立完成,指名板演,集体评讲。
(2)让学生说说自己的想法。
四、巩固提高
1、完成练习十三第3题。
学生直接把结果写在书上,集体核对。
2、练习十三第4题。
3、学生读题后,要求学生画出线段图进行分析,然后列式解答。
集体评讲。
五.本课总结。
通过这节课的学习,你有什么收获呢?
六、布置作业
练习十三第5题。
六年级数学下册教案10
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。
【教学目标】
1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
2、能按一定的比,将一些简单图形进行放大或缩小。
【教学重点】图形的放大与缩小。
【教学难点】按一定的比把图形放大或缩小。
【教学准备】多媒体
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例尺?
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、怎样求比例尺?
求图上距离和实际距离的最简整数比。
3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?
(1)学生尝试独立求比例尺。
(2)汇报交流
50c:40=50c:4000c=1:80
(3)你是怎么想的?
二、关键点拨
1、求比例尺。
(1)怎样求一幅图的比例尺?
先写出图上距离与实际距离的比,再化成最简整数比。
(2)比例尺有什么特点?
比例尺是前项或后项为1的`比。
(3)比例尺可以怎样表示?
数值比例尺和线段比例尺。(1:500000)或(线段比例尺)
2、求实际距离。
(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?
(2)学生尝试独立列比例解答。
(3)汇报交流
解:设这两地之间的实际距离大约是x厘米。
=
=5000000
5000000c=50
(4)你觉得在求实际距离时要注意什么问题?
实际距离一般用千米做单位。
3、求图上距离
(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?
(2)学生尝试画操场的平面图。
(3)汇报交流
你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】
三、巩固练习
1、课本第53页练习八第1题求比例尺。
2、课本第52页做一做第1题。
3、课本第52页做一做第2题。
四、分享收获 畅谈感想
这节课,你有什么收获?听课随想
六年级数学下册教案11
教学内容:
比较正数和负数的大小。
教学目的:
1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。
3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的`密切联系,激发学生学习数学的兴趣。
重点难点:
负数与负数的比较。
教学过程:
一、复习
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 -20xx六年级数学下册教案01-02 +20xx六年级数学下册教案01-02 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度
二、新授
(一)教学例3
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明-8在-6的左边,所以-8〈-6
5、再通过让另一学生比较8 〉6,但是-8〈 -6,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
四、全课总结
1、在数轴上,从左到右的顺序就是数从小到大的顺序。
2、负数比0小,正数比0大,负数比正数小。
五、布置作业
《家庭作业》第2页的练习。
六年级数学下册教案12
教学目标
1.在具体情境中认识怎样用字母表示南、西、东等方向,初步掌握根据方向和距离确定物体位置的方法,能根据方向和实际距离在平面图上确定物体的位置。
2.在掌握根据方向和距离在平面图上确定物体的位置的过程中,进一步培养画图能力、计算能力,发展空间观念。
3.积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发同学们的兴趣。
教学重点
根据方向和实际距离在平面图上确定物体的位置。
教学难点
明确在平面图上表示物体位置的具体过程和方法。
教学关键
重视不同数学知识的综合应用,感受数学知识的内在联系,不断提高解决实际问题的能力。
教学过程
一、复习
1.出示以灯塔为中心的平面图。
(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?
相机指出:东——E西——W南——S
(2)在图上指出北偏东、北偏西、南偏东、南偏西的`方向。
2.如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。
二、新课教学
1.出示教材中例2的平面图。
谈话:这是一幅以灯塔为中心的平面图,你能从图中了解哪些信息?
介绍:我们已经知道在平面图上常用N表示方向北,另外还常用E表示方向东,用S表示方向南,用W表示方向西。
提问:你能在平面图上指出东、西、南、北以及北偏东、北偏西、南偏东、南偏西等方向吗?请你在平面图上指一指。
题目还告诉我们“灯塔北偏东40?方向20千米处是清凉岛”,这句话有哪几层意思?
(一是告诉了清凉岛相对于灯塔的方向,二是告诉了灯塔到清凉岛的实际距离)你能根据题中的已知数据指出清凉岛的大致位置吗?
怎样在平面图上准确地表示出清凉岛的位置呢?在小组里说说自己的想法。
2.在班内交流。教师帮助学生明确在平面图上确定物体位置的具体步骤。
(1)在平面图上确定北偏东40?的方向。
根据“北偏东”的含义,以表示灯塔的点为顶点,正北方向为角的一条边,用量角器偏东40?画出角的另一条边,并在图中标出角的度数。
(2)应用比例尺的知识计算出灯塔到清凉岛的图上距离。
根据“图上距离1厘米表示实际距离5千米”计算出灯塔到清凉岛的图上距离。
(3)根据计算出的图上距离在所画射线上确定清凉岛的位置。
提醒:①根据计算出的图上距离,找到清凉岛的位置,用圆点表示,并在旁边标注“清凉岛”。
②标注出实际距离,把射线多余的部分擦掉。
3.同桌互相说一说刚才指出清凉岛的大致位置与准确位置相差远不远。
4.试一试
(1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?
(2)各自独立完成。
(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。
三、组织练习
1.完成“试一试”。
(1)让学生尝试做题。
(2)组织展示、交流。
(3)提问:你是怎样确定南偏西30?方向的?是怎样计算出灯塔到红枫岛的图上距离的?在图上表示红枫岛位置时你又是怎样做的?
2.完成“练一练”。
(1)学生独立完成,在小组内交流。
(2)在班内交流。并提问:你能完整地描述出熊猫馆和孔雀园的位置吗?它们到猴山的距离你是怎样算出来的?
(3)指名说一说在图中表示蛇馆位置的具体步骤。
3.完成练习十二第3题。
谈话:这道题内容比较多,要仔细读题弄清题意,明确题目要求。提问:图中以机场所在地点为端点,向四周画了许多条射线,每相邻的两条射线的夹角是多少度?你是怎么知道的?“每相邻两个圆之间的距离是10千米”这句话是什么意思?指着图说一说。
(2)提问:飞机A在屏幕上的位置是怎样确定的?
(3)让学生各自在图上表示出飞机B、C、D、E的位置,再展示部分学生的答案,共同评议、校正。
4.完成练习十二第4题。
(1)让学生在图中指出各场所的大体位置。
(2)让学生按给出的条件在图中画一画,算一算,确定每个单位在平面图中的位置。
(3)在小组里互相检查、评议。
5.完成练习十二第5题。
(1)学生独立做题。
(2)指名说一说1号、2号运动员落地的实际位置。
(3)同桌互相检查3号运动员落地的图上位置画得对不对。
四、小结
提问:这节课我们学到了什么知识?你哪些方面表现较好?
五、作业
练习十二第4题和第5题。
板书设计
根据方向和距离确定物体的位置
北—— N东—— E南—— S西—— W
六年级数学下册教案13
教学目标
1.理解求圆锥体积的计算公式。
2.会运用公式计算圆锥的体积。
3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学过程
一、铺垫孕伏
1.提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式
1.教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2.学生分组实验。
学生汇报实验结果:
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
4.引导学生发现:
圆柱体的体积等于和它等底等高的.圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。
板书:
5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。
6.思考:要求圆锥的体积,必须知道哪两个条件?
7.反馈练习
圆锥的底面积是5,高是3,体积是( )。
圆锥的底面积是10,高是9,体积是( )。
(二)算一算
学生独立计算,集体订正。
说说解题方法。
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
六年级数学下册教案14
教学目标:
1、结合具体问题,经历认识成反比例关系的量的过程。
2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。
3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。
课前准备:
找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。
教学过程:
一、问题情境
1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?
出示《安徒生童话》,可了解一下谁读过这本书。
师:猜一猜,这本书有多少页?
学生猜测,然后实际看一看,说出页数。
师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。
小黑板出示:亮亮红红聪聪丫丫
每天看的页数12 15 18 20
看的天数15 12 10 9
2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?
学生可能说出很多,如:
●亮亮每天看12页,看了15天。
●红红每天看15页,看了12天。
●聪聪每天看18页,看了10天。
●丫丫每天看20页,看了9天。
●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。
二、认识反比例
(一)读书问题
1、师:观察表中的数据,你发现了什么规律?
预设:●每天看的页数越多,看的天数就越少。
●每天看的页数越少,看的天数就越多。
●每天看的页数乘看书的天数,积是一定,都是180。
第三种意见学生没有提出,教师启发:
师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:
每天看的页数×需要的天数=书的总页数(一定)
2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)
师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。
板书:成反比例的量
3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。
师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?
学生说,教师填在表格中。
面值5元1元5角2角1角
张数2 10 20 50 100
师:仔细观察表中数据,你都发现了什么?
学生可能会说:
●换的钱的.面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。
●表中面值与张数的积是一定的。
师:你们能总结出这里的数量关系式吗?
学生回答,教师随机板书:
钱的面值×张数=10(元)
4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。
学生可能会说:
●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的张数就变小;钱的面值变小,张数就变大。
●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。
师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。
学生讨论后,多请几人发言。
5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?
学生可能会说:
●它们都是乘积一定,一个量变大,另一个量变小。
师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关系称为反比例关系。这段话在课本第13页,请同学们自己读一读。
学生自己读书。
6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?
学生可能会说:
●是两个相关联的量。
●这个量的乘积一定。
●一个量变大,另一个就变小;一个量变小,另一个就变大。
三、尝试应用
1、让学生自己判断“试一试”中的三组数量。
师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。
给学生独立思考、交流的时间。
2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?
重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。
3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。
学生交流,然后指名举例并说明理由。
4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。
给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。
学生可能会说:
●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。
●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。
学生如果有其他说法,只要意思对,就给予肯定。
四、课堂练习
1、练一练第2题,先让学生自己读题并判断,然后指名汇报。
2、练一练第3题,完成表格再判断,交流时说出自己的想法。
3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。
五、知识拓展
介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。
师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。
六年级数学下册教案15
课前准备
教师准备 PPT课件
教学过程
⊙谈话导入
同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。
⊙实践与操作
1.明确提出活动要求。
“有趣的平衡”活动由三部分组成。
(1)制作实验用具。
(2)探索规律,体验“杠杆原理”。
(3)应用规律,体会反比例关系。
2.小组合作,自主活动。(教师巡视,适当点拨)
3.展示制作实验用具情况。
4.汇报探索到的规律。
观察实验二、实验三的操作过程,你有什么发现?
预设
生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。
生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。
生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。
生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。
5.活动小结。
“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的'刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。
⊙典型例题解析
你能利用杠杆原理算出左边物体的质量吗?
分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。
解答 500×5÷2=1250(g)
⊙探究活动
1.课件出示探究内容。
星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?
2.小组讨论、分析、解答。
3.交流、汇报。
(答案不唯一)
⊙全课总结
通过本节课的学习,你有什么收获?
⊙布置作业
找一找生活中还有哪些地方应用了杠杆原理。
板书设计
有趣的平衡
有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。
【六年级数学下册教案】相关文章:
数学下册教案03-16
数学六年级下册教案02-17
六年级数学下册教案11-23
数学六年级下册教学教案01-06
六年级下册数学教案01-14
数学六年级下册圆柱的体积教案08-26
六年级下册数学教案01-19
六年级数学下册表格教案01-19
六年级数学下册人教版教案01-10
人教版六年级数学下册教案01-13