现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级数学下册教案

六年级数学下册教案

时间:2022-11-25 15:41:38 六年级数学教案 我要投稿

六年级数学下册教案(15篇)

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写呢?下面是小编精心整理的六年级数学下册教案,欢迎阅读,希望大家能够喜欢。

六年级数学下册教案(15篇)

六年级数学下册教案1

  线与角。〔教材第89~91页及第91页第1、2(1)题〕

  1.了解两点确定一条直线和两条相交直线确定一个点,并能区分直线、线段和射线。

  2.能结合具体情境认识角,会画出指定度数的角。

  3.培养学生的动手能力和互相交流合作的意识。

  重点:区分直线、线段和射线,认识角并会画角。

  难点:理解线与角间的内在联系与区别。

  量角器、尺子、课件。

  师:我们在小学阶段学过哪几种线?认识哪些角?

  生1:我们学过直线、射线、线段。

  生2:我们认识直角、锐角、平角、钝角、周角。

  师:这节课我们一起复习“线与角”。(板书课题:线与角)

  1.复习线段、射线和直线。

  课件出示:

  师:你能说出上面的图形各是什么吗?

  生:直线、射线、线段。

  师:你能找出线段、射线、直线的区别吗?

  学生分组讨论,教师巡视、辅导。

  先请学生汇报结果,再给出下表,让学生完成。

  端点个数能否度量

  线段

  射线

  直线

  师:线段、射线和直线有什么联系?(线段和射线是直线的一部分)

  师:长方形、正方形、三角形、平行四边形,它们的边是直线还是线段?(线段)

  师:角的边是直线吗?

  生:不是,角的边是射线。

  2.角的整理与分析。

  (1)让学生自己任意画一个角。

  师:根据你画的角说一说,关于角,我们都学习了哪些知识?(板书:角)

  教师画出一个角。

  (2)学生回答,教师板书。

  师:什么叫角?角的各部分名称是什么?

  师:计量角的单位是什么?角的大小与什么有关?与什么无关?怎样画角?

  师:按角的度数,角可以分为哪几种?

  师根据学生的回答板书。

  生1:由一点出发引出两条射线所组成的图形,叫作角。角由一个顶点和两条边组成。角的计量单位是度,符号是“°”。

  生2:角的大小与两边张开的大小有关,与边的长短无关。

  生3:根据角的度数,可以把角分为锐角、直角、钝角、平角、周角。

  师:锐角是怎样的角?(教师画出图形并写出相应的特征)

  师:大家能画出其余几种角的图形并说出它们的特征吗?

  生:锐角是小于90°的角;直角等于90°;钝角大于90°且小于180°;平角等于180°;周角等于360°。

  3.垂线和平行线。

  师:在同一平面内,两条直线有哪几种位置关系?

  生:相交(互相垂直与不垂直)和平行。

  师:小组内互相说说什么叫互相垂直,什么叫平行线。

  教师分别画出一组互相垂直和互相平行的直线。

  生1:两条直线相交成直角时,这两条直线叫作互相垂直,一条直线叫作另一条直线的垂线。

  生2:在同一平面内,不相交的两条直线叫平行线。

  师:平行线间的距离有什么特点?

  生:处处相等。

  师:如何画一条直线的垂线和平行线?

  学生分组讨论、交流,然后师生共同总结。

  师:通过今天的复习,你掌握了哪些知识?

  生1:能正确区分直线、线段和射线。

  生2:能画出指定度数的角。

  线与角

  1.线

  顶点个数能否度量

  线段2能

  射线1不能

  直线无不能

  A类

  1.填空。

  (1)线段有(  )个端点,射线有(  )个端点,直线(  )端点。

  (2)两条直线相交组成4个角,如果其中一个角是90°,那么其他三个角是(  )角,这两条直线的位置关系是(  )。

  (3)6时整,时针与分针所成角的'度数是(  )。

  (4)(       )决定了角的大小。

  (5)135度角比平角小(  )度,比直角大(  )度。

  2.判断。(对的在括号里画

  估算。(教材第77~78页)

  1.能结合具体情境进行估算并解释估算的过程,会选择合适的估算方法。

  2.培养学生的估算习惯。

  3.在解决具体问题的过程中感受估算的作用。

  重点:能结合具体情境进行估算并叙述估算的过程。

  难点:选择合适的估算方法。

  课件。

  课件出示教材第77页第2个主题图。

  师:根据你估算的结果判断应该去哪个影院看电影。

  生:应去星华影院。

  师:六年级大约有多少人?

  生:大约有270人。

  师:这节课我们就一起来复习“估算”。(板书课题:估算)

  师:在生活学习中,哪些时候要用到估算呢?

  生1:买东西的时候要估算带的钱够买几件商品。

  生2:计算前可以进行估算。

  生3:计算后可以用估算的方法验证结果是否正确。

  师:大家说得都很好,那么刚才那道题大家是用什么方法进行估算的?请你把自己的估算方法和小组内同学说一说。

  生1:我的估算方法是把几个班的人数都看成40,40×6是240,所以应去星华影院。

  生2:我的估算方法是把几个班的人数都看成50,50×6是300,所以应去星华影院。

  生3:我的估算方法是把几个班的人数都看成45,45×6是270,所以应去星华影院。

  师:大家都很棒,说出了不同的估算方法,希望大家在解决其他问题时也会选择合适的估算方法。

  师:通过今天的复习,你掌握了哪些知识?

  生:进一步理解了估算的过程,会选择合适的估算方法进行估算。

  A类

  1.估一估下面各题的结果,并把错误的改正过来。

  4200-500=3600  891+208=1100  404÷4=11  39×49=20__

  2.解决问题。

  (1)电影院有31排座位,每排36个,育英小学980名同学去看电影,座位够吗?

  (2)一本故事书有268页,小明每天看35页,一周能看完吗?

  (3)师徒两人共同加工458个零件,师傅每天加工35个,徒弟每天加工30个,8天能完成任务吗?

  (考查知识点:估算的意义;能力要求:能结合具体情境进行估算,会选择合适的估算方法)

  B类

  某校组织学生春游,若租用45座客车,则有15人没有座位,若租同样数量的60座客车,则余一辆空车,其余刚好坐满。已知45座客车租金为220元,60座客车租金为300元。

  (1)这个学校一共有学生多少人?

  (2)怎样租车最划算?

  (考查知识点:估算的应用;能力要求:利用估算解决具体的实际问题)

  课堂作业新设计

  A类:

  1.略

  2.(1)够(2)不能(3)能

  B类:

  (1)240人

  (2)租4辆45座客车和1辆60座客车最划算。

  教材第77页“巩固与应用”

  1.够不够

  2.略

  3.49≈50 50×30=1500(字) 15001528不能

  4.略

  5.小女孩儿估算的结果比精确结果大,小男孩儿估算的结果比精确结果小。

六年级数学下册教案2

  教学内容:

  P702– 75

  教学目标:

  1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

  2、培养学生仔细审题,认真思考,探索规律的良好习惯。

  教学重难点:

  理解正比例的意义和性质。

  教学过程:

  一、复习引入:

  我们已学了一些常见的数量关系,谁能来说一说:

  1、路程、速度、时间;

  2、单价、数量、总量;

  3、工作效率、工作时间、工作总量;

  ……

  二、先观察、后概括:

  1、例1:一列火车行驶的时间和路如下表:

  时间(小时)

  1

  2

  3

  4

  5

  6

  ……

  路程(千米)

  60

  120

  180

  240

  300

  360

  ……

  观察上表,回答下列问题:

  ⑴、表中有哪两个量是相关联的?

  ⑵、路程是怎样随着行车时间的变化而变化的?

  ⑶、相对应的路程和时间的比分别是多少?比值是多少?

  从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的`),这个比也就是速度。

  写成关系式是:=速度(一定)

  2、新改例2:一种铅笔,支数与总价如下表:

  支数)

  1

  2

  3

  4

  5

  6

  ……

  总价(元)

  0.3

  0.6

  0.9

  1.2

  1.5

  1.8

  ……

  由上表可以发现什么特征?

  (哪几个量是相关联的?这两个相关联的量之间有什么关系?)

  写成关系式是:=单价(一定)

  比较例1、例2,它们有什么共同点?

  概括:

  ⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

  ⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

  = K(一定)

  (结合例1、例2说一说)

  3、练一练P75

  三、巩固练习:

  1、 P76看后判断,并连起来说一说。

  2、 P76 – 2先观察,再分析。

  3、 P76 – 3

  四、小结:

  要判断两个量是否成正比例,依据什么来判断?

  1、两个相联的量?

  2、一个量随着另一个量的变化而变化,并且它们的比值一定。

  五、作业:

  P76 3 4

六年级数学下册教案3

  【教材分析】

  正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

  【学情分析】

  学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

  【设计理念】

  数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

  1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

  2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

  3.注重积累数学学习经验,渗透数学思想方法。

  4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

  【教学目标】

  1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

  3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

  【教学重点】

  理解正比例的意义。

  【教学难点】

  掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  【教学准备】

  教学课件。

  【教学过程】

  一、激趣设疑,铺垫衔接。

  1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

  2.结合现实情境回忆常见的数量关系。

  【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

  二、合作探究,发现规律。

  1.教学例1

  出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

  谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

  组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的.行驶时间变化,路程也随着变化。

  谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

  预设:

  (1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

  (2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

  根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

  提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

  根据学生的回答,板书:

  提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

  请学生完整地说一说表中的路程和时间成什么关系。

  【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

  2.教学“试一试”。

  让学生自主读题,根据表中已经给出的数据把表格填写完整。

  谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

  提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

  根据学生的回答,板书:

  让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

  【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

  3.抽象概括

  请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

  启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

  根据学生的回答,板书:,并揭示课题。

  请大家想一想,生活中还有哪些成正比例的量?

  【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

  三、分层练习,丰富体验

  1.“练一练”第1题。

  出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

  讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

  学生按要求活动,并组织反馈。

  提问:张师傅生产零件的数量和时间成正比例吗?为什么?

  2.“练一练”第2题。

  出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

  3.练习十第1题。

  先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

  4.练习十第2题。

  出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

  出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

  结合学生的回答小结。

  追问:判断两种相关联的量是否成正比例关系,关键看什么?

  【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

  四、反思回顾,提升认识

  谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

  【板书设计】

  正比例的意义

  两种相关联的量

六年级数学下册教案4

  教学目标

  1.在具体情境中认识怎样用字母表示南、西、东等方向,初步掌握根据方向和距离确定物体位置的方法,能根据方向和实际距离在平面图上确定物体的位置。

  2.在掌握根据方向和距离在平面图上确定物体的位置的过程中,进一步培养画图能力、计算能力,发展空间观念。

  3.积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发同学们的兴趣。

  教学重点

  根据方向和实际距离在平面图上确定物体的位置。

  教学难点

  明确在平面图上表示物体位置的具体过程和方法。

  教学关键

  重视不同数学知识的综合应用,感受数学知识的内在联系,不断提高解决实际问题的能力。

  教学过程

  一、复习

  1.出示以灯塔为中心的平面图。

  (1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

  相机指出:东——E西——W南——S

  (2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

  2.如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

  二、新课教学

  1.出示教材中例2的`平面图。

  谈话:这是一幅以灯塔为中心的平面图,你能从图中了解哪些信息?

  介绍:我们已经知道在平面图上常用N表示方向北,另外还常用E表示方向东,用S表示方向南,用W表示方向西。

  提问:你能在平面图上指出东、西、南、北以及北偏东、北偏西、南偏东、南偏西等方向吗?请你在平面图上指一指。

  题目还告诉我们“灯塔北偏东40?方向20千米处是清凉岛”,这句话有哪几层意思?

  (一是告诉了清凉岛相对于灯塔的方向,二是告诉了灯塔到清凉岛的实际距离)你能根据题中的已知数据指出清凉岛的大致位置吗?

  怎样在平面图上准确地表示出清凉岛的位置呢?在小组里说说自己的想法。

  2.在班内交流。教师帮助学生明确在平面图上确定物体位置的具体步骤。

  (1)在平面图上确定北偏东40?的方向。

  根据“北偏东”的含义,以表示灯塔的点为顶点,正北方向为角的一条边,用量角器偏东40?画出角的另一条边,并在图中标出角的度数。

  (2)应用比例尺的知识计算出灯塔到清凉岛的图上距离。

  根据“图上距离1厘米表示实际距离5千米”计算出灯塔到清凉岛的图上距离。

  (3)根据计算出的图上距离在所画射线上确定清凉岛的位置。

  提醒:①根据计算出的图上距离,找到清凉岛的位置,用圆点表示,并在旁边标注“清凉岛”。

  ②标注出实际距离,把射线多余的部分擦掉。

  3.同桌互相说一说刚才指出清凉岛的大致位置与准确位置相差远不远。

  4.试一试

  (1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?

  (2)各自独立完成。

  (3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

  三、组织练习

  1.完成“试一试”。

  (1)让学生尝试做题。

  (2)组织展示、交流。

  (3)提问:你是怎样确定南偏西30?方向的?是怎样计算出灯塔到红枫岛的图上距离的?在图上表示红枫岛位置时你又是怎样做的?

  2.完成“练一练”。

  (1)学生独立完成,在小组内交流。

  (2)在班内交流。并提问:你能完整地描述出熊猫馆和孔雀园的位置吗?它们到猴山的距离你是怎样算出来的?

  (3)指名说一说在图中表示蛇馆位置的具体步骤。

  3.完成练习十二第3题。

  谈话:这道题内容比较多,要仔细读题弄清题意,明确题目要求。提问:图中以机场所在地点为端点,向四周画了许多条射线,每相邻的两条射线的夹角是多少度?你是怎么知道的?“每相邻两个圆之间的距离是10千米”这句话是什么意思?指着图说一说。

  (2)提问:飞机A在屏幕上的位置是怎样确定的?

  (3)让学生各自在图上表示出飞机B、C、D、E的位置,再展示部分学生的答案,共同评议、校正。

  4.完成练习十二第4题。

  (1)让学生在图中指出各场所的大体位置。

  (2)让学生按给出的条件在图中画一画,算一算,确定每个单位在平面图中的位置。

  (3)在小组里互相检查、评议。

  5.完成练习十二第5题。

  (1)学生独立做题。

  (2)指名说一说1号、2号运动员落地的实际位置。

  (3)同桌互相检查3号运动员落地的图上位置画得对不对。

  四、小结

  提问:这节课我们学到了什么知识?你哪些方面表现较好?

  五、作业

  练习十二第4题和第5题。

  板书设计

  根据方向和距离确定物体的位置

  北—— N东—— E南—— S西—— W

六年级数学下册教案5

  教学目标:

  1、使学生能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  灵活应用圆柱的体积公式解决实际问题。

  教学过程:

  一、复习

  1、复习圆柱体积的推导过程

  长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。

  2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。

  二、解决实际问题

  1、练习三第4题。

  学生独立练习,强调选取有用信息,培养认真审题习惯。

  2、练习三第5题。

  (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

  (2)学生选择喜爱的方法解答这道题目。

  3、练习三第10题。

  指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

  4、练习三第8题。

  (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

  (2)在充分理解题意后学生独立完成,集体订正。

  4、练习三第9题

  (1)学生独立审题后完成。

  评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

  5、练习三第11题。

  此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。

  (3)三、布置作业

  完成练习中未做完的习题

  教学反思

  第五课时特别关注

  练习三第4题,在教学中必须应该特别关注。

  关注理由:

  1、有多余条件,是培养学生收集有用信息的契机。

  这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。

  在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。

  2、有容易忽视的条件,是培养学生认真审题的契机。

  一般习题中的数据是用阿拉伯数字呈现,可这道题的`问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。

  学生巧解

  ——巧求削去部分的体积

  今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?

  我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。

  同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。

  而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

六年级数学下册教案6

  一、学生基本情况分析:

  ②情况分析(学科特点与班级情况“个性”的分析)

  智的学生。这些学生都来自服务半径“三村一段”,学生的基础成绩都比较好。该班级学生经过半年的共同学习生活,已经形成了勤奋学习、积极向上、团结友爱、关心集体、尊敬师长的良好道德品德;他们已经形成了良好的学习习惯,具有较强的学习能力,学习比较刻苦,成绩比较稳定。

  二、总的教学目的要求:

  1.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题。

  2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;

  3、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  4、在具体的情境中,初步理解图形的放大和缩小,.理解比例的意义和性质,初步理解比例尺的意义,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。

  5、初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。

  6、让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问

  题中数量关系、空间形式和数据信息的理解,提高综合应用数学知识和方法飞能力。

  三、各单元教学目的要求与教学进度安排(附后)

  四、提高教学质量的主要措施和研究课题:

  1、创设愉悦的教学情境,激发学生学习的兴趣。

  2、提倡学法的多样性,关注学生的个人体验。

  3、课堂训练形式的`多样化,重视一题多解,从不同角度解决问题。

  4、加强基础知识的教学,使学生切实掌握好这些基础知识。本学期要以新的教学理念,为学生的持续发展提供丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,密切数学与生活的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技能,培养学生创新意识和实践能力的目的。

六年级数学下册教案7

  复习目标:

  1.使学生学会用列表的方法解决有关问题,提高学生分析能力和解决问题的能力。

  2.形成一些解决问题的策略,发展学生的实践能力。

  复习过程:

  一回顾与交流。

  教学例6。

  六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。

  请问哪两位班长是同班的?

  1、 通过读题你能判断出哪两位班长是同班的`?

  学生很难做出判断。

  2、 可以用什么方法把题意给整理、表示出来?

  教师引导学生用列表的方法把题意表示出来。

  如:用“∕”表示到会,用“○”表示没到会。

  A B C D E F

  第一次 / / / ○ ○ ○

  第二次 ○ / ○ / /

  第三次 / ○ ○ ○ / /

  3、引导提问。

  (1)从第一次到会的情况,你可以看出什么?可以看出:A只可能和D、E或F同班。

  (2)从第二次到会的情况,你可以判断出什么?可以判断:A只可能和D或E同班。

  (3)从第三次到会的情况,你可以判断出什么?可以判断:A只可能和D同班。

  4、那么B和C分别与谁同班。

  从第一次到会的情况可以看出,B只可能和E或F同班。

  所以,C只可能与E同班。

  二巩固练习。

  完成课文练习十八第5~7题。

六年级数学下册教案8

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的'教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

六年级数学下册教案9

  教学目标:

  1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。

  2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

  3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

  教学重点:

  引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。

  教学准备:

  课前测量数据,多媒体课件。

  教学过程设计:

  一、预习导学

  1、师:同学们,下面我们来看段小视频。

  2、师:同学们,物体的影子是怎么形成的呢?

  3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)

  4、师:那么物体的影子长度和物体的'高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)

  二、新课探究

  1、探究两根长度相同的竿的影长。

  (出示视频)学生记录数据。

  师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?

  (生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。

  2、探究两根长度不同的竿的影长。

  (出示视频)学生记录数据

  师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)

  结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。

  3、探究竿长度与影长之间的关系。

  (出示表格)1号2号3号4号竿长/cm

  影长/cm竿长与影长的比值

  要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的比值是相同的。

  4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。

  (出示视频,学生记录数据,计算)

  三、当堂练习

  1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?

  2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?

  3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?

  四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

  五、课堂总结

六年级数学下册教案10

  【教学内容】人教版小学六年级数学下册。

  【教学目标】

  1、在丰富的现实情境中认识生活中的折扣现象,理解折扣的含义。

  2、能把折扣问题转化成百分数问题,并能准确、灵活地解决生活中的折扣问题。

  3.在探索解决“折扣”问题的过程中,体验百分数在现实生活中的应用,获得用数学解决问题的成功体验,提高对数学学习的兴趣。

  【教学重点】

  理解折扣的意义,感受折扣在生活中的运用,能正确解决生活中简单的折扣问题。

  【教学难点】能应用“折扣”的知识灵活解决生活中的相关问题。

  【教学准备】多媒体课件

  【教学过程】

  一、激情导课

  1、导入课题

  (1)、孩子们!五一和国庆期间,商家为了招揽顾客,经常采用一些促销的手段,你见过哪些促销手段?(降价,打折、买几送几、送货上门等)

  (2)、有些同学提到了“打折”,大家看,(出示课件) 你认为打折之后去购买商品,是比原来便宜了还是贵了?

  (3)、揭示课题:今天,我们就来学习与打折有关的数学问题——折扣。(板书课题)

  2、明确目标

  师:对于折扣,你知道些什么?还想知道什么?随着学生的回答教师出示学习目标:(1)、知意义 。(2)、会运用

  刚才有同学提到他的理解,那是这样吗?在这节课中你一定会找到答案的。好,让我们进行今天的第一个学习任务。

  二、民主导学

  任务一:理解折扣的意义

  1、任务呈现:请大家自学书97页第一自然段,完成下面的问题,有困难的组内互相帮助。

  (1)什么是打折?

  (2)几折表示( )也就是( )

  (3)八折=( — )=( )% 九五折= ( — )= ( )﹪

  (4)八折表示什么?九五折表示什么?

  2、自主学习

  学生自学后完成,如遇到困难可以组内互相帮助。

  3、展示交流

  (1)明确”打折”的含义

  打折就是商店降价出售,几折就是十分之几,百分之几十。

  (2)明确“九折”“八五折”的含义

  九折就是现价是原价的十分之九,百分之九十。

  八五折表示现价是原价的十分之八点五,百分之八十五,谁是谁的85%呢?谁能说一说八五折的具体含义?

  (3)及时巩固

  也就是说,折扣都可以转化成百分数,是这样的吗?那你能不能很快地将下面的折扣改写成百分数。你能说说这些折扣的意思吗?(课件出示图)用谁是谁的'百分之几描述。

  七折 六五折 八八折

  (4)小结

  同学们,我们说了这么多折扣的意思,几折就表示十分之几,也就是百分之几十。如八五折:现价是原价的85%(或十分之八点五)

  刚才我们了解了这么多的折扣知识,下面看我们能不能利用这些折扣知识帮解决几个实际问题。

  任务二:用折扣解决问题(例题4(1))

  1、出示例4的第(1)题:

  爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售,买这辆车用了多少钱?

  小结:孩子们,你们听明白了吗?他是把折扣问题转化成百分数问题解决的。看来呀,关于折扣的问题我们只要把它转化成百分数问题就能顺利解决了。看来这道题没有难倒大家,好,来道难点的。

  2、任务呈现

  幻灯出示例4的第(2)题:

  爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  2、自主学习

  学生独立思考,自主解决。

  3、展示交流

  是啊!九折就是便宜了一折,我们是说打九折销售,在国外有些国家就说成降价10%。说法是不一样但意思一样吗?六折就是便宜了几折,八五折呢?

  4、比较上两题的共同点和不同点,请大家仔细观察我们刚才这两道题,有什么共同点和不同点,都已知了原价的折扣,求现价和便宜了多少钱,在解答方法上我们都是求一个数的百分之几是多少。. 折扣问题的应用题其实就是百分数应用题,解答时可以按照百分数应用题的方法去解答。

  5、同学们!通过这几次的购物经历,老师发现大家理解了折扣的含义,其实关于折扣还有很多的小奥秘。如果商场打折你最想让他打几折呢?也就是折扣数越小越好,刚才有同学提到0折,其实0折并不是不花钱,是什么意思呢?大家可以上网查一查。

  看这道题,同一款米奇书包,在A店打八折,在B店打九折,如果是你,你会到哪个店去买?

  那如果老师告诉你这个书包的原价,你还会这样选择吗?A店原价95元,B店原价80元。想想看你要去哪个店去买?非常好,大家都拿出笔来开始计算了。

  小结:同学们灵活运用折扣知识解决了这么多的问题,真不错。看来我们在购物时,不能仅看折扣,还要看这件商品原价,当然我们还要注意这件商品的质量、你是否需要等等,不要被商家的促销手段所蒙骗,做一个理智地消费者。

  好,这节课你学得怎么样呢?我们检测一下吧?

  三、检测导结

  1、目标检测

  一、填空、

  1、七折=( )%=( — ) 95%=( )折。

  2、九五折表示现价是( )的( )%。

  3、一件衣服打六八折销售,就是便宜了原价的( )%

  四、解决问题

  一个书包原价100元,现在商店打八八折销售,买这个书包现在要花多少钱?便宜了多少钱?

  2、结果反馈

  学生独立完成后,教师出示答案,订正。

  3、反思小结

  折扣是百分数在生活中应用的一个例子,百分数在生活中的应用还非常广泛,这些知识都等着我们去发现、去思考、去探索,希望大家能做个有心人!可不要让自己的学习成绩打了“折扣”哦!

六年级数学下册教案11

  教学目标

  1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

  2.能够正确地运用比的基本性质把比化成最简单的整数比。

  3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重点和难点

  1.理解比的基本性质。

  2.正确运用比的基本性质把比化成最简单的整数比。

  教学过程设计

  (一)复习准备

  1.复习商不变的性质。

  (1)谁能很快地直接说出 4125的商?

  (2)说一说,你是怎样想的?(4125=(414)(254)=164100=16.4)

  (3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

  2.复习分数的基本性质。

  (1)把下面各分数约分:

  (2)通分练习:

  (3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

  3.求比值的练习。

  8∶4= 48∶12= 16∶8=

  24∶18= 40∶16= 15∶5=

  (二)学习新课

  1.导入新课。

  我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

  2.概括比的基本性质。

  (1)创设情境。

  2∶4根据比与除法的关系可以写成2∶4=24,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=24=(22)∶(42)=48=4∶8)

  (2)概括比的基本性质。

  ①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

  ②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  强调同时、相同、0除外这几个重点的关键词语。

  (3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

  3.应用比的基本性质化简比。

  (1)引出比的基本性质的作用。

  例 一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的.比是多少?

  请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

  讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

  (2)解释什么是最简单的整数比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  (3)化简比。

  应用比的基本性质可以把比化成最简单的整数比。

  例1 把下面各比化成最简单的整数比。

  这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

  讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

  这个比的前、后项是什么数?(分数)

  18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

  讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

  请把1.25∶2化成最简单的整数比。

  讨论:如何把小数比化简成最简单的整数比?

  ④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

  (4)区别化简比和求比值。

  ①出示练习题:化简下面各比,并求出比值。

  填表之后用投影进行订正。

  讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

  比值就是求商,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

  (三)巩固反馈

  1.完成第57页的做一做。

  把下面各比化成最简单的整数比。

  请学生在练习本上独立完成,用投影仪集体订正。

  2.完成第59页第6题。

  声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

  578∶340=17∶10

  3.填空:(口答)

  (1)85∶51=(85( ))∶(51( ))=5∶3

  (四)课堂总结

  通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  (五)布置作业

  第58页第5题,第59页第7,8题。

  课堂教学设计说明

  复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

  对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

  最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

六年级数学下册教案12

  教学内容:教科书第l~2页及做一做中的题目,练习一的第1、2题。

  教学目的:使学生了解有关利息的初步知识,知道本金、利息、利率的含意,会利用利息的计算公式进行一些有关利息的简单计算。

  教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

  教学过程:

  一、导入

  教师提问:

  如果你家中有一些暂时不用的钱,将怎么办?让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

  为什么要把钱存入银行呢?多让几个学生发表意见。

  教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

  你们知道利息是怎样计算的吗?

  教师:今天我们就来学习一些有关利息的知识。板书课题:利息

  二、新课

  出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月 1日,小丽不仅可以取回存入的 100元,还可以得到银行多付给的 5.67元,共105.67元。

  先请学生读题,然后教师再说明:题目中有存定期一年表示什么呢?一般来讲,储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是定期一年,即小丽在银行存的 100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

  教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:存入银行的钱做本金存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。

  板书:取款时银行多付的钱叫做利息

  这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:利率就是利息与本金的比值这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

  根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

  按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

  二年期的'定期整存整取的年利率是5.94%是什么意思?(到期取款时每100元可得5.94元的利息。)

  小丽的本金是300元,到期时她每一年应得利息多少元?(300元的5.94%。)学生口述,教师板书: 3005.94%

  二年应得利息多少元?学生口述,教师接着板书: 2

  小丽的存款到期时可以得到的利息是35.64元。

  想一想,存款的利息应该怎样计算呢?先让学生说一说,教师再板书:利息=本金利率时间

  小丽的存款到期时,她可以取出本金和利息一共多少元?(335.64元。)

  如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

  三、巩固练习

  做第2页做一做中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

  订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0.1425%,表示什么意思?再引导学生分步说出: 280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

  四、作业

  练习一的第1题。

六年级数学下册教案13

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的`左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

六年级数学下册教案14

  教学内容:教材60~61页内容

  教学目标:让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  重点难点:

  1、学习用工具测量两点间的距离。

  2、学会步测和目测,体验步测和目测的价值。

  教学准备:卷尺、测绳、标杆

  一、认识测量工具

  教师播放农民在平整土地;工人在兴修水利、建造房屋时进行测量的场景。

  师:同学们在平时的生活中有没有看到过这些场景?你知道测量的工具有哪些?

  教师说明:测量土地时要用到标杆、卷尺、测绳等工具.

  二、测量方法研究学习

  1、利用工具实际测量

  师:如果要测量教室的长和宽可以怎样来测量?

  教师小结:测量较近的距离,可以用卷尺或测绳直接量出.

  师:如果要测量学校操场跑道的长度应该如何来测量?测量时应注意些什么问题?(学生边汇报,教师边演示“实际测量”)

  (1)两个人先在A点和B点各插一根标杆;

  (2)第一个人在A点指挥,第三个人把另一根标杆插在C点,使它和B点的标杆同时被A点的标杆挡住;

  (3)用同样的方法再把另一根标杆插在D点……

  (根据测量距离的长短来确定分段测量的段数.)

  (4)把所有这些点连接起来,就定出了一条直线.

  测定直线以后就可以用卷尺或测绳逐段量出所要测量的距离了

  2、步测和目测

  (1)步测

  师:你知道1步的长度如何测量吗?

  组织学生学习书本上的内容,明确测量方法。

  提醒学生在实际进行步测时,要注意迈步均匀,防止步子忽大忽小,向前走时尽量保持直线进行。这样测量出来的结果相对准确些。

  教师演示1步的长度:从后脚尖到前脚尖的距离.

  教师演示步测的过程:先量出几十米的一段距离,用均匀的`步子沿直线走上3、4次,记好每次走的步数,然后再算出平均每次走的步数,再算出走一步的平均长度是多少。

  (2)目测

  师:你现在能不能坐在座位上估算一下你和老师之间的距离.

  师:这种只用眼睛来估量一段距离的方法叫做目测.

  教师出示图片“参照图”,帮助学生练习目测.

  教师说明:目测时容易受地形的影响,如在开阔地,容易把距离估测的偏短,而在狭长的地方又容易把距离估测的偏长。

  三、实践活动

  1、测定直线.

  教师提出要求:让学生分组按照课前分别指定的两点之间测定直线,在地面上画出直线,并量出两点间的距离。

  2、步测

  (1) 引导学生确定自己的平均步长

  A:先在操场上量出一段距离(如50米):让学生反复走3次,并要求记下自己每次所走的步数,填在表格里。

  B:指导学生依次算出走50米的平均步数,以及自己的平均步长。

  教师也可以参与其中,可以让学生交流每个人步测的平均步长,总结身高高的学生通常平均步长一些,身高矮的学生平均步长相对短一些。

  (2) 步测学校操场的宽

  可以让学生先走一走,并记下所走的步数,然后根据自己的平均步长算出操场的宽。

  结合天天练P38页的实际测量,可以组织学生测量篮球场的长和宽。

  (3) 比较步测和工具测量的结果。

  用工具测量操场的宽,并将用工具测量的结果和步测的结果进行比较。

  3、目测

  教师先测定50米的距离,每隔10米插上标杆,估计10米、20米、30米……各有多长,然后拔掉标杆,根据指定的目标练习目测.

  四、课堂小结

  师:通过这节课的学习,你有什么收获?

  你知道步测和目测与利用工具测量有什么区别?

  总结:在缺乏测量工具或对测量结果要求无需很精确时,可采用步测或目测.

  课堂作业:完成天天练38页内容

六年级数学下册教案15

  教学内容:

  课本第29——30页例2和“练一练”,练习五第6-9题。

  教学目标:

  1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  2、通过操作,观察,培养学生的推理能力,发展学生的思维。

  教学重难点:

  一个数乘分数的意义以及计算方法。

  课前准备:

  多媒体课件

  教学过程:

  一、创设情境

  同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的`内容。

  复习:计算下面各题,并说出计算方法。

  3/7 ×2 5/8 ×1 1/10 ×5

  上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

  二、探究新知

  今天,我们来学习一个数乘以分数的意义和计算方法。

  1、教学例2

  出示例2的图,然后出示条件:

  小芳做了10朵绸花,其中1/2是红花,2/5是绿花。

  引导学生理解:“其中12 “是什么意思?

  使学生明白是10朵中的1/2,然后出示问题

  红花有多少朵?

  引导学生看图理解:求红花有多少朵,就是求10朵的1/2

  让学生应用已有的知识经验解决。

  学生可能列式:10÷2=5(朵)

  在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。

  教师说明要求,学生列式解答。

  在此基础上教学第(2)题,怎样解决

  (2)绿花有多少朵?

  可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

  10÷5×2=4(朵)

  在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。

  学生独立计算,订正时指出:

  计算10×2/5可以先约分

  2、引导学生进行比较

  通过对上述两个问题的计算,你明白了什么?

  小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。

  计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。

  引导小结:求一个数的几分之几是多少,可以用乘法计算。

  三、巩固练习

  1、做练一练的第1题。

  先让学生根据题意涂色,然后列式解答。

  2、做练一练的第2题。

  通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3、练习五第6、7题。

  四、课堂总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、布置作业

  练习五第8、9题。

  教学反思:

【六年级数学下册教案】相关文章:

数学下册教案03-16

数学六年级下册教案02-17

六年级数学下册教案11-23

数学六年级下册教学教案01-06

六年级下册数学教案01-14

数学六年级下册圆柱的体积教案08-26

六年级下册数学教案01-19

六年级数学下册表格教案01-19

六年级数学下册人教版教案01-10

人教版六年级数学下册教案01-13