现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学教案

七年级数学教案

时间:2023-03-27 11:51:36 兴亮 七年级数学教案 我要投稿

北师大版七年级数学教案(精选15篇)

  作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?下面是小编收集整理的北师大版七年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

北师大版七年级数学教案(精选15篇)

  七年级数学教案 篇1

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。

  2、就第一章而言,多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。

  新课程标准是我们确定教学目标,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

  难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

  二、教材处理

  本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的`教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。

  3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。

  4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标:

  1.理解和掌握多项式除以单项式的运算法则。

  2.运用多项式除以单项式的法则,熟练、准确地进行计算.

  3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

  4.培养学生耐心细致、严谨的数学思维品质.

  重点、难点:

  (1)多项式除以单项式的法则及其应用.

  (2)理解法则导出的根据。

  课时安排:一课时.

  教具学具:多媒体课件.

  授课人及时间:关龙二〇〇七年三月二十九日

  教学过程:

  1.复习导入

  (l)单项式除以单项式法则是什么?

  (2)计算:

  1)–12a5b3c÷(–4a2b)=

  2)(–5a2b)2÷5a3b2 =

  3)4(a+b)7 ÷ (a+b)3 =

  4)(–3ab2c)3÷(–3ab2c)2 =

  找规律:怎样寻找多项式除以单项式的法则?

  尝试练习引入分析

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2.例题解析

  例3计算:见课本P49

  (1)尝试练习

  (2)提问:哪个等号是用到了法则?

  (3)在计算多项式除以单项式时,要注意什么?

  注意:(l)先定商的符号;

  (2)注意把除式(?后的式子)添括号;

  要求学生说出式子每步变形的依据.

  (3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

  练习设计:

  (1)随堂练习P50

  (2)联系拓广P51

  3.小结

  你在本节课学到了什么?

  (1)单项式除以单项式的法则

  (2)多项式除以单项式的法则

  正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

  4.作业

  P50知识技能

  5.综合练习(课件)

  七年级数学教案 篇2

  教学目标

  1.使学生理解的意义;

  2.使学生掌握求一个已知数的;

  3.培养学生的观察、归纳与概括的能力.

  教学重点和难点

  重点:理解的意义,理解的代数定义与几何定义的一致性.

  难点:多重符号的化简.

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  二、师生共同研究的定义

  特点?

  引导学生回答:符号不同,一正一负;数字相同.

  像这样,只有符号不同的两个数,我们说它们互为,如+5与

  应点有什么特点?

  引导学生回答:分别在原点的两侧;到原点的距离相等.

  这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的`数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

  3.0的是0.

  这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

  三、运用举例 变式练习

  例1 (1)分别写出9与-7的;

  例1由学生完成.

  在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

  引导学生观察例1,自己得出结论:

  数a的是-a,即在一个数前面加上一个负号即是它的

  1.当a=7时,-a=-7,7的是-7;

  2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

  3.当a=0时,-a=-0,0的是0,因此,-0=0.

  么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2 简化-(+3),-(-4),+(-6),+(+5)的符号.

  能自己总结出简化符号的规律吗?

  括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

  课堂练习

  1.填空:

  (1)+1.3的是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.简化下列各数的符号:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列两对数中,哪些是相等的数?哪对互为?

  -(-8)与+(-8);-(+8)与+(-8).

  四、小结

  指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

  五、作业

  1.分别写出下列各数的:

  2.在数轴上标出2,-4.5,0各数与它们的

  3.填空:

  (1)-1.6是______的,______的是-0.2.

  4.化简下列各数:

  5.填空:

  (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

  七年级数学教案 篇3

  教学目标:

  1、知道有理数加法的意义和法则

  2、会用有理数加法法则正确地进行有理数的加法运算

  3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

  教学重点:

  有理数加法则的探索及运用

  教学难点:

  异号两数相加的法则的理解及运用

  教学过程:

  一、创设情境

  展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

  (学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

  二、探求新知

  1、甲、乙两队进行足球比赛,

  (1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

  (2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

  足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

  (学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

  (3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

  (引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

  2、你能举出一些运用有理数加法的实际例子吗?

  (学生列举实例并根据具体意义写出算式)

  3、学生活动:

  (1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (3)、你还能再做一些类似的活动,并写出相应的算式吗?

  (教师示范活动(1)的`操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)

  4、归纳法则:

  观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

  (由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

  5、例题精讲:

  例1 、计算

  (1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

  (4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)

  解:(1)、(-5)+(-3)

  = -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)

  = -8

  (2)、(-8)+(+2)

  = -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)

  = -6

  (4)、5+(-5);

  =0 (互为相反的两数之和为0)

  6、训练巩固:

  1、 p33练一练2

  (学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)

  7、延伸拓展:

  (1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和

  (2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明

  (这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)

  三、课堂小结:

  学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

  四、布置作业:

  1、课本p41第1题

  2、列举一些生活中运用有理数加法的实际例子,并相互交流。

  七年级数学教案 篇4

  一、素质教育目标

  (一)知识教学点

  1.能根据一个数的表示“距离”,初步理解的概念.

  2.给出一个数,能求它的

  (二)能力训练点

  在把的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

  (三)德育渗透点

  1.通过解释的几何意义,渗透数形结合的思想.

  2.从上节课学的相反数到本节的.,使学生感知数学知识具有普遍的联系性.

  (四)美育渗透点

  通过数形结合理解的意义和相反数与的联系,使学生进一步领略数学的和谐美.

  二、学法引导

  1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

  2.学生学法:研究+6和-6的不同点和相同点→概念→巩固练习→归纳小结(代数意义)

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的

  2.难点:的几何意义,代数定义的导出.

  3.疑点:负数的是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出概念;教师出示练习题,学生讨论解答归纳出代数意义.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  【教法说明】的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入 新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的我们把这个距离叫+6与-6的

  七年级数学教案 篇5

  教学目标:

  1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:—155米。

  (2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

  1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

  2、学生交流、讨论。

  3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

  ①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

  ②如果有学生发表分三类的.,有的分两类的,可以引导他们互相争论。

  4、小结:什么是正数、负数?

  师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

  五、联系生活,巩固练习

  1、练习一第2、3题

  2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。

  3、讨论生活中的正数和负数

  (1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)

  (2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

  六、课堂小结

  这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

  七年级数学教案 篇6

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的.中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

  七年级数学教案 篇7

  【学习目标】:

  1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:

  正数和负数概念

  【教学过程】:

  一、知识链接:

  1、小学里学过哪些数请写出来:

  2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

  (2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P2的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的.数叫做 。

  2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第1,2题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ( )

  A.0既是正数,又是负数

  C.0是最大的负数

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

  其中最高处为_______地,最低处为_______地.

  3.“甲比乙大-3岁”表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【课后作业】P5第1、2题

  七年级数学教案 篇8

  一.知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.

  二.过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.

  三.情感态度与价值观

  培养学生积极思考,合作交流的意识和能力.

  教学重、难点与关键

  1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.

  2.难点:正确理解负数的概念.

  3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.

  教具准备

  投影仪.

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.

  用正负数表示具有相反意义的量

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.

  (6)、 请学生解释课本中图1.1-2,图1.1-3中的`正数和负数的含义.

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.

  六、巩固练习

  课本第3页,练习1、2、3、4题.

  七、课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.

  八、作业布置

  1.课本第5页习题1.1复习巩固第1、2、3题.

  七年级数学教案 篇9

  【教学目标】

  知识与技能:了解并掌握数据收集的基本方法。

  过程与方法:在调查的过程中,要有认真的态度,积极参与。

  情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

  【教学重难点】

  重点:掌握统计调查的基本方法。

  难点:能根据实际情况合理地选择调查方法。

  【教学过程】

  讲授新课

  像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

  调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

  在一个统计问题中,我们把所要考察对象的`全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

  例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

  为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

  上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

  师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

  学生小组合作、讨论,学生代表展示结果。

  教师指导、评论。

  师:除了问卷调查外,我们还有哪些方法收集到数据呢?

  学生小组讨论、交流,学生代表回答。

  师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

  (1)你班中的同学是如何安排周末时间的?

  (2)我国濒临灭绝的植物数量;

  (3)某种玉米种子的发芽率;

  (4)学校门口十字路口每天7:00~7:10时的车流量。

  七年级数学教案 篇10

  教学过程:

  知识整理

  1、回顾本单元的学习内容,形成支识网络。

  2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  1、什么叫比?比例?比和比例有什么区别?

  2、什么叫解比例?怎样解比例,根据什么?

  3、什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  4、什么叫比例尺?关系式是什么?

  基础练习

  1、填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

  甲乙两数的.比是5:3。乙数是60,甲数是()。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=():()

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例():()、():()

  实践与应用

  1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5。4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计:整理和复习

  1、比例的意义

  2、比例比例的性质

  3、解比例

  4、正反比例正方比例的意义

  5、正反比例的判断方法

  6、比例应用题正比例应用题

  7、反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、培养学生的思维能力。

  七年级数学教案 篇11

  教学目标:

  1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题

  2、培养学生的空间观念,学会用运动的观点分析问题。

  重点:

  平移的概念和作图方法。

  难点:

  平移的作图。

  教学过程

  一、观察图形形成印象

  生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案。

  观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。

  二、提出新知实践探索

  平移:

  (1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

  (2)新图形中的.每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点。

  (3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移

  探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案

  引导学生找规律,发现平移特征

  三、典例剖析深化巩固

  例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC

  先观察探讨,再通过点的平移,线段的平移总结规律,给出定义

  探究活动可以使学生更进一步了解平移

  四、巩固练习

  课本33页:1,2,4,5,6,7

  五、小结:

  在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。

  六、作业

  课本P30页习题5。4第3题

  七年级数学教案 篇12

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

  请学生举出一些相反意义的'量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

  七年级数学教案 篇13

  一、说教材分析

  1.教材的地位和作用

  二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

  2.教学目标

  知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

  能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

  情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

  3.重点、难点

  重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

  难点:在实际生活中二元一次方程组的应用。

  二、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习旧知,温故知新

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

  设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  这个问题中包含了哪些必须同时满足的条件?设胜的场数是-,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,

  胜场积分+负场积分=总积分。

  这两个条件可以用方程

  -+y=10

  2-+y=16

  表示:

  上面两个方程中,每个方程都含有两个未知数(-和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

  把两个方程合在一起,写成

  -+y=10

  2-+y=16

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (3)发现问题,探求新知

  满足方程①,且符合问题的实际意义的-、y的值有哪些?把它们填入表中。

  - -y

  y

  上表中哪对-、y的值还满足方程②。

  一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的.公共解,叫做二元一次方程组的解。

  设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4)分析思考,加深理解

  通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

  (5)强化训练,巩固双基

  课堂练习:

  设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

  练习2:已知下列三对数值:

  哪一对是下列方程组的解?

  (设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  (6)小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

  ①通过本节课的学习,你学会了哪些知识;

  (7)布置作业,提高升华

  教科书第89页1、第90页第1题。

  以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

  五、评价与反思

  本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

  1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

  2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

  3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

  七年级数学教案 篇14

  一、教材分析

  1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

  2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

  3、教学的重点、难点:

  重点:邻补角、对顶角的概念,对顶角的性质和应用。

  难点:理解对顶角性质的探索

  (确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

  4、教学目标:

  A:知识与技能目标

  (1).理解对顶角和邻补角的概念,能在图形中辨认.

  (2).掌握对顶角相等的性质和它的推证过程

  (3).会用对顶角的性质进行有关的简单推理和计算.

  B:过程与方法目标

  (1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

  (2).体会具体到抽象再到具体的思想方法.

  C:情感、态度与价值目标

  (1).感受图形中和谐美、对称美.

  (2).感受合作交流带来的成功感,树立自信心.

  (3).感受数学应用的广泛性,使学生更加热爱数学

  二、学情分析:

  在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

  三、教法和学法:

  教法:

  叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

  学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

  四、教学过程:

  1课前准备:课件,剪刀,纸片,相交线模型

  2教学过程:设置以下六个环节

  环节一:情景屋(创设情景,激发学习动机)

  请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

  环节二:问题苑(合作交流,解释发现)

  通过一些问题的设置,激发学生探究的欲望,具体操作:

  (1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

  (2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

  (让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

  (3):分析研究此模型:

  设置以下一系列问题:

  A、两直线相交构成的4个角两两相配共能组成几对?(6对)

  B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

  另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

  C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

  D、你能阐述它们互补和相等的理由吗?

  (一堂好课,是由一系列的真问题组成的,本环节在老师的`引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

  环节三:快乐房(大胆创设,感悟变换)

  (设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

  环节四:实例库(拓展应用,升华提高)

  例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

  例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力

  (一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).

  最后安排一个脑筋急转弯:见投影

  (让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)

  环节五:点金帚(学后反思感悟收获)

  通过本堂课的探究

  我经历了......

  我体会到......

  我感受到......

  (学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)

  角的名称

  特征

  性质

  相同点

  不同点

  对顶角

  ①两条直线相交而成的角

  ②有一个公共顶点

  ③没有公共边

  对顶角相等

  都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

  对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个

  邻补角

  ①两条直线相交面成的角

  ②有一个公共顶点

  ③有一条公共边

  邻补角互补

  环节六:沉思阁(课后延伸张扬个性)

  此为课后作业:

  (适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)

  五、教学设计说明:

  设计理念:面向全体学生,实现:

  ——人人学有价值的数学

  ——人人都能获得必需的数学

  ——不同的人在数学上得到不同的发展

  过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。

  设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。

  七年级数学教案 篇15

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

  教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的.两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

【七年级数学教案】相关文章:

七年级数学教案03-18

七年级人教版数学教案11-03

七年级上数学教案02-07

七年级数学教案08-19

初中七年级数学教案06-24

七年级下册数学教案08-26

最新七年级数学教案09-28

【热门】七年级数学教案12-15

七年级上册数学教案12-16

【荐】七年级数学教案12-19