高一数学教案函数
作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。来参考自己需要的教案吧!下面是小编为大家整理的高一数学教案函数,希望能够帮助到大家。
高一数学教案函数1
本文题目:高一数学教案:函数的奇偶性
课题:1.3.2函数的奇偶性
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f (x) =x3与g (x) = x2的.图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函数 ( )是偶函数,则b=___________ .
B3、已知 ,其中 为常数,若 ,则
_______ .
B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )
(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对
B5、如果定义在区间 上的函数 为奇函数,则 =_____ .
C6、若函数 是定义在R上的奇函数,且当 时, ,那么当
时, =_______ .
D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定义在 上的奇函数 ,则常数 ____ , _____ .
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
八、课后反思:
高一数学教案函数2
第二十四教时
教材:倍角公式,推导和差化积及积化和差公式
目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。
过程:
一、 复习倍角公式、半角公式和万能公式的'推导过程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教学与测试》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化简得:
∵ 即
二、 积化和差公式的推导
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)
例三、 求证:sin3sin3 + cos3cos3 = cos32
证:左边 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右边
原式得证
三、 和差化积公式的推导
若令 + = , = ,则 , 代入得:
这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小结:和差化积,积化和差
五、 作业:《课课练》P3637 例题推荐 13
P3839 例题推荐 13
P40 例题推荐 13
高一数学教案函数3
教学目标
1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.
2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.
3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.
教学重点与难点
教学重点:函数单调性的概念.
教学难点:函数单调性的判定.
教学过程设计
一、引入新课
师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?
(用投影幻灯给出两组函数的图象.)
第一组:
第二组:
生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.
师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.
(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)
二、对概念的分析
(板书课题:)
师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.
(学生朗读.)
师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?
生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.
师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!
(通过教师的情绪感染学生,激发学生学习数学的兴趣.)
师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.
(指图说明.)
师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.
(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)
师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……
(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)
生:较大的函数值的函数.
师:那么减函数呢?
生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.
(学生可能回答得不完整,教师应指导他说完整.)
师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?
(学生思索.)
学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.
(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)
生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.
师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?
生:不能.因为此时函数值是一个数.
师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?
生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.
(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)
师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.
师:还有没有其他的关键词语?
生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.
师:你答的很对.能解释一下为什么吗?
(学生不一定能答全,教师应给予必要的提示.)
师:“属于”是什么意思?
生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.
师:如果是闭区间的话,能否取自区间端点?
生:可以.
师:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).
师:能不能构造一个反例来说明“任意”呢?
(让学生思考片刻.)
生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.
师:那么如何来说明“都有”呢?
生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.
师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.
(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)
师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.
(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)
三、概念的应用
例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?
(用投影幻灯给出图象.)
生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.
生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?
师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.
例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.
师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.
(指出用定义证明的必要性.)
师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.
(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)
师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.
生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函数.
师:他的证明思路是清楚的`.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).
这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.
(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)
调函数吗?并用定义证明你的结论.
师:你的结论是什么呢?
上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.
生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.
生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.
域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.
上是减函数.
(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:
(1)分式问题化简方法一般是通分.
(2)要说明三个代数式的符号:k,x1·x2,x2-x1.
要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.
对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)
四、课堂小结
师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?
(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)
生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.
五、作业
1.课本P53练习第1,2,3,4题.
数.
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
课堂教学设计说明
是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.
另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.
还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.
高一数学教案函数4
一:【课前预习】
(一):【知识梳理】
1.直角三角形的边角关系(如图)
(1)边的关系(勾股定理):AC2+BC2=AB2;
(2)角的关系:B=
(3)边角关系:
①:
②:锐角三角函数:
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函数值是一个比值.
2.特殊角的三角函数值.
3.三角函数的关系
(1) 互为余角的三角函数关系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的三角函数关系.
平方关系:sin2 A+cos2A=l
4.三角函数的大小比较
①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.
②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(二):【课前练习】
1.等腰直角三角形一个锐角的余弦为( )
A. D.l
2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )
3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )
4.已知A为锐角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【经典考题剖析】
1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.
2.先化简,再求其值, 其中x=tan45-cos30
3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比较大小(在空格处填写或或=)
若=45○,则sin________cos
若45○,则sin cos
若45,则 sin cos.
5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;
⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.
三:【课后训练】
1. 2sin60-cos30tan45的结果为( )
A. D.0
2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )
A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形
3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________
4.cos2+sin242○ =1,则锐角=______.
5.在下列不等式中,错误的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()
7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.
8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的.值;②tanBCD的值
9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)
10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)
高一数学教案函数5
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.
教学重点:
函数的概念,函数定义域的求法.
教学难点:
函数概念的理解.
教学过程:
Ⅰ.课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(xR)是函数吗?
问题二:y=x与y=x2x 是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).
Ⅱ.讲授新课
[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.
在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.
在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.
在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一.
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.
现在我们把函数的概念进一步叙述如下:(板书)
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.
记作:y=f(x),xA
其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.
一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.
反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.
二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.
y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.
Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.
[师]理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合A中数的任意性,集合B中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示
Ⅲ.例题分析
[例1]求下列函数的定义域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.
解:(1)x-20,即x2时,1x-2 有意义
这个函数的定义域是{x|x2}
(2)3x+20,即x-23 时3x+2 有意义
函数y=3x+2 的定义域是[-23 ,+)
(3) x+10 x2
这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).
注意:函数的定义域可用三种方法表示:不等式、集合、区间.
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.
下面我们来看求函数式的.值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的).
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义.
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.
对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.
对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.
解:(1)yR
(2)y{1,0,-1}
(3)画出y=x2+4x+3(-31)的图象,如图所示,
当x[-3,1]时,得y[-1,8]
Ⅳ.课堂练习
课本P24练习17.
Ⅴ.课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)
Ⅵ.课后作业
课本P28,习题1、2. 文 章来
高一数学教案函数6
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的'语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
我国xxxx年4月份非典疫情统计:
日期222324252627282930
新增确诊病例数1061058910311312698152101
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P20例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
○1课本P22第2题
○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)课堂练习
求下列函数的定义域
(1)
(2)
(3)
(4)
(5)
(6)
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题
高一数学教案函数7
教学目标 :
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程 设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1、比较数的大小
例 1:比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
∵5.1<5.9 loga5.1="">loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:
①构造对数函数,直接利用对数函数 的单调性比大小
②借用“中间量”间接比大小
③利用对数函数图象的位置关系来比大小。
2、函数的定义域, 值 域及单调性。
例 2:
⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x—3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)
生:分母2x—1≠0且偶次根式的被开方式log0.8x—1≥0,且真数x>0。
板书:
解:∵ 2x—1≠0 x≠0.5
log0.8x—1≥0 , x≤0.8x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x—3>0 x<—3 x="">1
(3x+3)>0 , x>—1
x2+2x—3<(3x+3) —2
不等式的解为:1
例 3:求下列函数的值域和单调区间。
⑴y=log0.5(x— x2)
⑵y=loga(x2+2x—3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y=log0。5u, u=x— x2复合而成。
板书:
解:⑴∵u=x— x2>0, ∴0
u=x— x2=—(x—0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50..25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x— x2
y=log0.5u
y=log0.5(x— x2)
函数y=log0.5(x— x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?
生:⑴的底数是常值,⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2—3x—4)≥lg(2x+10);②loga(x2—x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2—2x),(a>0,a≠1)
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的'定义域;②讨论它的奇偶性; ③讨论它的单调性。
⑷已知函数y=loga(ax—1) (a>0,a≠1),
①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。
5、课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:
一 、比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。
二、函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
高一数学教案函数8
一、教学目标
1、理解一次函数和正比例函数的概念,以及它们之间的关系。
2、能根据所给条件写出简单的一次函数表达式。
二、能力目标
1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
三、情感目标
1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
四、教学重难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
五、教学过程
1、新课导入
有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,
请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,
(2)你能写出x与y之间的关系式吗?
分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。
2、做一做
某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)
接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的.几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。
3、一次函数,正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
4、例题讲解
例1:下列函数中,y是x的一次函数的是( )
①y=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B
高一数学教案函数9
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生): 是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由 得 .又 的值域为 ,
所求反函数为 .
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书) 定义:函数 的反函数 叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1. 研究相关函数的'性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若 ,求 的取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
高一数学教案函数10
学习目标 1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2、 求出 , 时的函数值,写出 , 。
结论: 。
3、 奇函数:___________________________________________________
4、 偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的`偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
高一数学教案函数11
目标:
1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;
2.让学生了解函数的零点与方程根的联系 ;
3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;
4。培养学生动手操作的.能力 。
二、教学重点、难点
重点:零点的概念及存在性的判定;
难点:零点的确定。
三、复习引入
例1:判断方程 x2-x-6=0 解的存在。
分析:考察函数f(x)= x2-x-6, 其
图像为抛物线容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函数f(x)的图像是连续曲线,因此,
点B (0,-6)与点C(4,6)之间的那部分曲线
必然穿过x轴,即在区间(0,4)内至少有点
X1 使f(X1)=0;同样,在区间(-4,0) 内也至
少有点X2,使得f( X2)=0,而方程至多有两
个解,所以在(-4,0),(0,4)内各有一解
定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点
抽象概括
y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。
f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点
所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点
注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;
2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;
3、我们所研究的大部分函数,其图像都是连续的曲线;
4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。
四、知识应用
例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?
解:f(x)=3x-x2的图像是连续曲线, 因为
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解
练习:求函数f(x)=lnx+2x-6 有没有零点?
例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。
解:考虑函数f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。
练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。
五、课后作业
p133第2,3题
高一数学教案函数12
本文题目:高一数学教案:对数函数及其性质
2.2.2 对数函数及其性质(二)
内容与解析
(一) 内容:对数函数及其性质(二)。
(二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.
一、 目标及其解析:
(一) 教学目标
(1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;
(2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..
(二) 解析
(1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.
(2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.
二、 问题诊断分析
在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。
三、 教学支持条件分析
在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。
四、 教学过程
问题一. 对数函数模型思想及应用:
① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.
(Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的.关系?
(Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.
②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想
问题二.反函数:
① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function)
② 探究:如何由 求出x?
③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .
那么我们就说指数函数 与对数函数 互为反函数
④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?
⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?
⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?
由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)
⑦练习:求下列函数的反函数: ;
(师生共练 小结步骤:解x ;习惯表示;定义域)
(二)小结:函数模型应用思想;反函数概念;阅读P84材料
五、 目标检测
1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是
A. (x 0) B. (x 0) C. (x 0) D. (x 0)
1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.
2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )
A. B. C. D.
2. B 解析: ,代入 ,解得 ,所以 ,选B.
3. 求函数 的反函数
3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!
高一数学教案函数13
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的'增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学教案函数14
教学目标
会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。
重 点
函数单调性的证明及判断。
难 点
函数单调性证明及其应用。
一、复习引入
1、函数的定义域、值域、图象、表示方法
2、函数单调性
(1)单调增函数
(2)单调减函数
(3)单调区间
二、例题分析
例1、画出下列函数图象,并写出单调区间:
(1) (2) (2)
例2、求证:函数 在区间 上是单调增函数。
例3、讨论函数 的单调性,并证明你的结论。
变(1)讨论函数 的单调性,并证明你的结论
变(2)讨论函数 的单调性,并证明你的`结论。
例4、试判断函数 在 上的单调性。
三、随堂练习
1、判断下列说法正确的是 。
(1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;
(2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;
(3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;
(4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。
2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函数 在 上是___ ___;函数 在 上是__ _____。
3.下图分别为函数 和 的图象,求函数 和 的单调增区间。
4、求证:函数 是定义域上的单调减函数。
四、回顾小结
1、函数单调性的判断及证明。
课后作业
一、基础题
1、求下列函数的单调区间
(1) (2)
2、画函数 的图象,并写出单调区间。
二、提高题
3、求证:函数 在 上是单调增函数。
4、若函数 ,求函数 的单调区间。
5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。
三、能力题
6、已知函数 ,试讨论函数f(x)在区间 上的单调性。
变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。
高一数学教案函数15
教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。
组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
教学目标:
㈠知识和技能
1、了解幂函数的概念,会画幂函数 ,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2、了解几个常见的幂函数的性质。
㈡过程与方法
1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2、使学生进一步体会数形结合的思想。
㈢情感、态度与价值观
1、通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2、利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的单调性与幂指数的关系
教学过程
一、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长xx,这里a是S的函数
问题5:如果某人xxs内骑车行进了xxkm,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的`形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
(一)幂函数的概念如果设变量为,函数值为xx,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?xx幂函数的定义:一般地,我们把形如xx的函数称为幂函数(power function),其中xx是自变量,xx是常数。
【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)
结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数
试一试:判断下列函数那些是幂函数(1)(2)(3)(4)我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)
(二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数x的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数x的图象吗?
【探究二】观察函数x的图象,将你发现的结论写在下表内。定义域,值域,奇偶性,单调性,定点,图象范围
【探究三】根据上表的内容并结合图象,试总结函数:x的共同性质。
(1)函数x的图象都过点
(2)函数x在x上单调递增;
归纳:幂函数x图象的基本特征是,当x是,图象过点x,且在第一象限随x的增大而上升,函数在区间x上是单调增函数。(演示几何画板制作课件:幂函数。asp)
请同学们模仿我们探究幂函数x图象的基本特征x的情况探讨x时幂函数x图象的基本特征。(利用drawtools软件作图研究)
归纳:xx时幂函数x图象的基本特征:过点x,且在第一象限随x的增大而下降,函数在区间x上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。
(三)例题剖析
【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1) (2) (3)
分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?
方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。
(1)若函数解析式中含有分母,分母不能为0;
(2)若函数解析式中含有根号,要注意偶次根号下非负;
(3)0的0次幂没有意义;
(4)若函数解析式中含有对数式,要注意对数的真数大于0;求函数的定义域的本质是解不等式或不等式组。
结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)
【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”)
(1)________
(2)________
(3)__________
(4)____________
分析:利用考察其相对应的幂函数和指数函数来比较大小
三、课堂小结
1、幂函数的概念及其指数函数表达式的区别
2、常见幂函数的图象和幂函数的性质。
四、布置作业
㈠课本第73页习题2.4
第1、2、3题
㈡思考题:根据下列条件对于幂函数x的有关性质的叙述,分别指出幂函数x的图象具有下列特点之一时的x的值,其中:
(1)图象过原点,且随x的增大而上升;
(2)图象不过原点,不与坐标轴相交,且随x的增大而下降;
(3)图象关于x轴对称,且与坐标轴相交;
(4)图象关于x轴对称,但不与坐标轴相交;
(5)图象关于原点对称,且过原点;
(6)图象关于原点对称,但不过原点;
检测与反馈
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
2、下列结论正确的是( )
A、幂函数的图象一定过原点
B、当xx时,幂函数x是减函数
C、当xx时,幂函数x是增函数
D、函数 既是二次函数,也是幂函数
3、下列函数中,在 是增函数的是( )
A、 B、 C、 D、
4、函数 的图象大致是( )
5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________
6、写出下列函数的定义域,并指出它们的单调性:
同伴评 (优、良、中、须努力)
自 评 (优、良、中、须努力)
教师评 (优、良、中、须努力)
【高一数学教案函数】相关文章:
高一数学教案《函数概念》11-20
高一数学教案函数15篇12-30
函数的概念的数学教案02-07
数学教案:函数与方程02-25
函数数学教案11-27
高一数学函数的教案08-26
函数的概念的数学教案5篇02-07
二次函数数学教案02-07
函数解析式的求法数学教案11-02