现在位置:范文先生网>教案大全>数学教案>初中数学教案

初中数学教案

时间:2022-12-30 09:35:23 数学教案 我要投稿

初中数学教案合集15篇

  作为一无名无私奉献的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?下面是小编帮大家整理的初中数学教案,欢迎大家分享。

初中数学教案合集15篇

初中数学教案1

  教学目标:

  (一)知识与技能

  理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

  (二)过程与方法

  1.在经历用字母表示数量关系的过程中,发展符号感;

  2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

  (三)情感态度价值观

  1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

  2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

  教学重、难点:

  重点:单项式及单项式系数、次数的概念。

  难点:单项式次数的概念;单项式的书写格式及注意点。

  教学方法:

  引导——探究式

  在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

  教具准备:

  多媒体课件、小黑板.

  教学过程:

  一、 创设情境,引入新课

  出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

  情境问题:

  青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

  爱国主义情感,得到一次情感教育。

  解:根据路程、速度、时间之间的关系:路程=速度×时间

  2小时行驶的路程是:100×2=200(千米)

  3小时行驶的路程是:100×3=300(千米)

  t小时行驶的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

  如:100×a可以写成100a或100a。

  代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

  代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

  设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

  让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

  1、边长为a的正方体的表面积是__,体积是__.

  2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

  3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

  4、数n的相反数是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它们有什么共同的特点?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  单项式:数与字母、字母与字母的乘积。

  注意:单独的一个数或字母也是单项式。

  设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

  火眼金睛

  下列各代数式中哪些是单项式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  设计意图:加强学生对不同形式的单项式的直观认识。

  解剖单项式

  系数:单项式中的数字因数。

  如:-3x的.系数是 ,-ab的系数是 , 的系数是 。

  次数:一个单项式中的所有字母的指数的和。

  如:-3x的次数是 ,ab的次数是 。

  小试身手

  单项式 2a 2 -1.2h xy2 -t2 -32x2y

  系数

  次数

  设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

  单项式的注意点:

  (1)数与字母相乘时,数应写在字母的___,且乘号可_________;

  (2)带分数作为系数时,应改写成_______的形式;

  (3)式子中若出现相除时,应把除号写成____的形式;

  (4)把“1”或“-1”作为项的系数时,“1”可以__不写。

  行家看门道

  ①1x ②-1x

  ③a×3 ④a÷2

  ⑤ ⑥m的系数为1,次数为0

  ⑦ 的系数为2,次数为2

  设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

  三、例题讲解,巩固新知

  例1:用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有 册;

  (2)底边长为a,高为h的三角形的面积 ;

  (3)一个长方体的长和宽都是a,高是h,它的体积是 ;

  (4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

  为 元;

  (5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

  解:(1)12n,它的系数是12,次数是1

  (2) ,它的系数是 , 次数是2;

  (3)a2h,它的系数是1,次数是3;

  (4)0.9a,它的系数是0.9,次数是1;

  (5)0.9a,它的系数是0.9,次数是1。

  设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

  试一试

  你还能赋予0.9a一个含义吗?

  设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

  大胆尝试

  写出一个单项式,使它的系数是2,次数是3.

  设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

  四、拓展提高

  尝试应用

  用单项式填空,并指出它们的系数和次数:

  (1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

  (2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

  (3)产量由m千克增长10%,就达到 千克;

  设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

  能力提升

  1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

  2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

  设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

  五、小结:

  本节课你感受到了吗?

  生活中处处有数学

  本节课我们学了什么?你能说说你的收获吗?

  1、单项式的概念: 数与字母、字母与字母的乘积。

  2、单项式的系数、次数的概念。

  系数:单项中的数字因数;

  次数:单项中所有字母的指数和。

  3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

  设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

  结束寄语

  悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

  设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

  六、板书设计

  2.1 整式

  单项式概念 探究 例1 多

  单项式的系数概念 观察交流 尝试应用 媒

  单项式的次数概念 能力提升 体

  七、作业:

  1.作业本(必做)。

  2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

  设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

  八、设计理念:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案2

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的'线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

初中数学教案3

  一、素质教育目标

  (一)知识教学点

  1.使学生理解多项式的概念.

  2.使学生能准确地确定一个多项式的次数和项数.

  3.能正确区分单项式和多项式.

  (二)能力训练点

  通过区别单项式与多项式,培养学生发散思维.

  (三)德育渗透点

  在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

  (四)美育渗透点

  单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美

  二、学法引导

  1.教学方法:采用对比法,以训练为主,注重尝试指导.

  2.学生学法:观察分析→多项式有关概念→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:多项式的概念及单项式的联系与区别.

  2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.

  3.疑点:多项式中各项的符号问题.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)复习引入,创设情境

  师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

  (出示投影1)

  1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

  , , ,2, , , ,

  2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

  学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

  【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.

  师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

  学生活动:同座进行讨论,然后选代表回答.

  师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

  学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

  (二)探索新知,讲授新课

  师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

  [板书]3.1整式(多项式)

  学生活动:讨论归纳什么叫多项式.可让学生互相补充.

  教师概括并板书

  [板书]多项式:几个单项式的和叫多项式.

  师:强调每个单项式的符号问题,使学生引起注意.

  (出示投影2)

  练习:下裂代数式 , , , , , ,

  , , 中,是多项式的有:

  ___________________________________________________________.

  学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

  【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的'概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

  师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

  师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

  [板书]

  学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.

  师:给予归纳,并做适当板书:

  [板书]

  学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.

  根据学生回答,师归纳:

  在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

  [板书]

  【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

  (三)尝试反馈,巩固练习

  (出示投影3)

  1.填空:

  2.填空:

  (1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.

  (2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.

  学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

  【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

  (四)归纳小结

  师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

  归纳:单项式和多项式统称为整式.

  [板书]

  说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.

  巩固练习:

  (出示投影4)

  下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

  学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.

  【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

  (五)变式训练,培养能力

  (出示投影5)

  1.单项式 , , 的和_________,它是__________次__________项式.

  2. 是_______次________项式 是__________次_________项式,它的常数项_________.

  3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.

  4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

  学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

  师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.

  【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.

  自编题目练习:

  每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

  【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

  师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

  学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

  【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

  八、随堂练习

  1.判断题

  (1)-5不是多项式( )

  (2) 是二次二项式( )

  (3) 是二次三项式( )

  (4) 是一次三项式( )

  (5) 的最高次项系数是3( )

  2.填空题

  (1)把上列代数式分别填在相应的括号里

  , , ,0, , ,

  ; ;

  ; ;

  .

  (2)如果代数式 是关于 的三次二项式则 , .

  九、布置作业

  (一)必做题:课本第149页习题3.1A组12.

  (二)选做题:课本第150页习题3.1B组3.

  十、板书设计

  随堂练习答案

  1.√ × × √ ×

  2.(1)单项式 ,多项式 ;

  整式 ;

  二项式 ;

  三次三项式 ;

  (2) , .

  作业答案

  教材P.149中A组12题:(1)三次二项式 (2)二次三项式

  (3)一次二项式 (4)四次三项式

初中数学教案4

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

  等都不是代数式.

  3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写代数式的注意事项:

  (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

  如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

  #FormatImgID_0#

  .数字与数字相乘一般仍用“×”号.

  (2)代数式中有除法运算时,一般按照分数的写法来写.

  (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的代数式的'意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

  教学设计示例

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a·b=b·a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1代数式

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

  2举例说明

  例1 填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

  例2 说出下列代数式的意义:

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3 用代数式表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

  2说出下列代数式的意义:(投影)

  3用代数式表示:(投影)

  (1)x与y的和; (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫代数式?

  教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

  六、作业

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用代数式表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的1/3 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

初中数学教案5

  这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从以下几个方面来就本节课的教学进行解说。

  一、教材分析

  教材所处的地位及作用:

  本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

  二、学情分析

  1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

  2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

  三、教学目标

  1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的`变化与对应的思想;

  2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

  3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;

  4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

  四、重点、难点

  1、重点:锐角正弦的定义及应用;

  2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

  3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

  五、教法及学法

  本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  六、教学过程

  为了实现本节的教学目标,教学过程分为以下六个环节:

  (一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

  (四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

  下面就几个主要环节进行解说

  (一)复习旧知,情境引入

  (二)先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

  (二)合作探究,获得新知:

  先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

  当∠A的度数一定时,∠A的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A的对边和斜边的比值是关于∠A度数的函数。

  再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

  (三)巩固训练

  讲解一道求正弦值的例题。

  (四)强化提高,培养能力

  出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

  (五)小结归纳,拓展深化

初中数学教案6

  一、教学目标

  1、了解二次根式的意义;

  2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3、掌握二次根式的性质和,并能灵活应用;

  4、通过二次根式的计算培养学生的逻辑思维能力;

  5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

  二、教学重点和难点

  重点:

  (1)二次根的意义;

  (2)二次根式中字母的取值范围。

  难点:确定二次根式中字母的取值范围。

  三、教学方法

  启发式、讲练结合。

  四、教学过程

  (一)复习提问

  1、什么叫平方根、算术平方根?

  2、说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式。

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的`一部分。

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略。

  说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学教案7

  湖北省咸宁市咸安区实验中学 章福枝

  一、内容与内容解析(一)内容

  一元一次不等式组的概念及解法

  (二)内容解析

  上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的教学重点:一元一次不等式组的解法.

  二、目标及目标解析(一)目标

  (1)理解一元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析

  达到目标(1)的标志是:学生能说出一元一次不等式组的特征.

  达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.

  三、教学问题诊断分析 通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.

  四、教学过程设计

  (一)提出问题 形成概念

  问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么? 设问(1):依据题意,你能得出几个不等关系? 设问(2):设抽完污水所用的时间还是范围?

  小组讨论,交流意见,再独立设未知数,列出所用的不等关系. 教师追问(1):类比方程组的'概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围. 教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成. 教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评 教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.

  设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义.

  (二)解法探讨 步骤归纳 例1 解下列不等式组

  学生尝试独立解不等式组,老师强调规范格式

  设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?

  学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集.

  设计意图:初步感受解一元一次不等式组的方法和步骤.

  (三)应用提高 深化认知

  例2 x取那些整数值时,不等式5x+2>3(x-1)与

  都成立?

  设问1:不等式都成立表示什么意思? 小组讨论

  设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?

  学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.

  (四)归纳总结 反思提高

  教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?(2)解一元一次不等式组的一般步骤?

  (3)一元一次不等式组解集的一般规律是什么?

  设计意图:通过问题归纳总结本节课所学的主要内容.

  (五)布置作业 课外反馈 教科书习题9.3第1,2,3题

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

初中数学教案8

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的.理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教案9

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程(师生活动) 设计理念

  探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  也可以教师说出一些数,让学生进行判断。

  集合的概念不必深入展开。

  创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数 这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结 到现在为止我们学过的`数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业

  1, 必做题:教科书第18页习题1.2第1题

  2, 教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教案10

  教学目标

  1.知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

  2.过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  3.情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度.

  重、难点与关键

  1.重点:去括号法则,准确应用法则将整式化简.

  2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

  3.关键:准确理解去括号法则.

  教具准备

  投影仪.

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的'时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号.

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

  利用分配律,可以将式子中的括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

  二、范例学习

  例1.化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

  解答过程按课本,可由学生口述,教师板书.

  例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

  解答过程按课本.

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

  三、巩固练习

  1.课本第68页练习1、2题.

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路点拨:一般地,先去小括号,再去中括号.

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题.

  2.选用课时作业设计.

初中数学教案11

  【教学目标】

  1进一步认识方程及其解的概念。

  2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。

  【教学重点】

  一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。

  【教学难点】

  用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。

  【学习准备】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

  (2)x31;

  (3)3x5;

  (4)2xy4;

  (5)x31;

  (6)3x14.

  2.方程与等式有什么联系与区别?

  方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。

  【课本导学】

  思考一阅读并解答课本第114页“合作学习”的三个问题,思考:

  1.列方程就是根据问题中的相等关系,写出含有未知数的等式。

  (1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?

  (2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加

  (3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?

  你是怎么理解“三人平均每人投进14个球”这句话的?

  思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:

  1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。

  2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的.含义吗?[练习]完成课本第115页课内练习

  1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?

  思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:

  1.(1)如果一个数是方程有什么关系?

  (2)如果一个数是方程350应该是多少?

  (3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12

  14的解,这个数代入方程的左边计算得到的值与14 3 1

  x500的解,这个数代入方程的左边计算得到的值10 2x12

  14进行尝试求解时,你认为x必须是整数吗

  x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。

  [练习]完成课本第115页课内练习

  2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?

  2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】

  【学习检测】

  1.下列说法正确的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,属于一元一次方程的是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.设某数为x,根据下列条件列出求该数的方程:

  (1)某数加上1,再乘以2,得6.

  (2)某数与7的和的2倍等于10.

  (3)某数的5倍比某数小3.

  4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?

  设还需租用x辆,则可列出方程44x+64=328.

  (1)写出一个方程,使它的解是

  2.【作业布置】略

  【课后反思】

  课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:

  1.忽略课堂“火花”,错失追问良机

  在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】

  师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.

  师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?

  不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什

初中数学教案12

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

  二、目标和目标解析

  (一)教学目标

  1.理解不等式的概念

  2.理解不等式的解与解集的意义,理解它们的区别与联系

  3.了解解不等式的概念

  4.用数轴来表示简单不等式的解集

  (二)目标解析

  1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

  2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

  3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

  因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

  五、教学过程设计

  (一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

  (二)立足实际引出新知

  问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  1.从时间方面虑:

  2.从行程方面:<>50 3.从速度方面考虑:x>50÷

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

  (三)紧扣问题概念辨析

  1.不等式

  设问1:什么是不等式?

  设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

  2.不等式的解

  设问1:什么是不等式的解?设问

  2:不等式的解是唯一的吗?由学生自学再讨论.

  老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

  3.不等式的解集

  设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问

  2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

  老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

  4.解不等式

  设问1:什么是解不等式?由学生回答.

  老师强调:解不等式是一个过程.

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题

  2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的'意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

  (五)归纳小结,反思

  提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?

  <的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题.

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

  六、目标检测设计1.填空

  下列式子中属于不等式的有___________________________

  ①x +7>

  ②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

  2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数

  ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教案13

  一、教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、课堂教学过程设计

  (一)从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  例1 某数的3倍减2等于某数与4的和,求某数。

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3。

  答:某数为3。

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4。

  解之,得x=3。

  答:某数为3。

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

  (二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42 500,

  所以x=50 000。

  答:原来有50 000千克面粉。

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:

  (1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿。

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的'解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

  例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5。

  其苹果数为3× 5+9=24。

  答:第一小组有5名同学,共摘苹果24个。

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

  (设第一小组共摘了x个苹果,则依题意,得)

  (三)课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

  3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

  (四)师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆。

  (五)作业

  1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

初中数学教案14

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的.划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初中数学教案15

  初中数学分层次教学案例

  【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

  【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

  例题:课本p123证明两个角之间的关系,

  请同学们总结一下他们可能出现的情况。

  【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

  生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

  师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的'方法和自己的想法。

  师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

  在师生的共同研讨下得出了这些方法。

  师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

  生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

  【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

  1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

  2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

  就不是主动性参与,而是被动的、消极的参与。

  3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

  4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

【初中数学教案】相关文章:

初中数学教案08-12

【精】初中数学教案01-12

初中数学教案【热】01-12

【热】初中数学教案01-12

初中数学教案【热门】01-12

【热门】初中数学教案01-12

初中数学教案【推荐】01-12

【荐】初中数学教案01-12

初中数学教案【荐】01-12

初中数学教案【精】01-26