高中数学数列教案(精选10篇)
作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?以下是小编为大家整理的高中数学数列教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学数列教案 1
一、知识与技能
1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;
2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.
二、过程与方法
1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;
2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.
三、情感态度与价值观
通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.
四、教学过程
导入新课
师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)
(1)0,5,10,15,20,25,…;
(2)48,53,58,63,…;
(3)18,15.5,13,10.5,8,5.5…;
(4)10 072,10 144,10 216,10 288,10 366,….
请你们来写出上述四个数列的第7项.
生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.
师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.
生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.
师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.
生:1每相邻两项的差相等,都等于同一个常数.
师:作差是否有顺序,谁与谁相减?
生:1作差的顺序是后项减前项,不能颠倒.
师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.
这就是我们这节课要研究的内容.
推进新课
等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的.公差(常用字母“d”表示).
(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;
(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.
师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)
生:从“第二项起”和“同一个常数”.
师:很好!
师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?
生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….
师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.
[合作探究]
等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?
生:a2-a1=d,即a2=a1+d.
师:对,继续说下去!
生:a3-a2=d,即a3=a2+d=a1+2d;
a4-a3=d,即a4=a3+d=a1+3d;
师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?
生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.
师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?
生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:
因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.
师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.
[教师:精讲]
由上述关系还可得:am=a1+(m-1)d,
即a1=am-(m-1)d.
则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,
即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)
由此我们还可以得到.
[例题剖析]
【例1】(1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?
生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.
师:好!下面我们来看看第(2)小题怎么做.
生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).
由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.
师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).
说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.
【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
例题分析:
师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?
生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.
师:说得对,请你来求解.
生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕
an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,
所以我们说{an}是等差数列,首项a1=p+q,公差为p.
师:这里要重点说明的是:
(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….
(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.
(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习
(1)求等差数列3,7,11,…的第4项与第10项.
分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.
解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.
评述:关键是求出通项公式.
(2)求等差数列10,8,6,…的第20项.
解:根据题意可知a1=10,d=8-10=-2.
所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.
评述:要求学生:注意解题步骤的规范性与准确性.
(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.
分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.
解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.
令7n-5=100,解得n=15.所以100是这个数列的第15项.
(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.
解:由题意可知a1=0,,因而此数列的通项公式为.
令,解得.因为没有正整数解,所以-20不是这个数列的项.
课堂小结
师:(1)本节课你们学了什么?
(2)要注意什么?
(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)
生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).
高中数学数列教案 2
一、教材分析
1、教学目标:
A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;
B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
2、教学重点和难点
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。
二、教法分析
采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是
21,22,23,24,25,
2.某剧场前10排的座位数分别是:
38,40,42,44,46,48,50,52,54,56。
3.某长跑运动员7天里每天的训练量(单位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特点:
从第2项起,每一项与前一项的差都等于同一个常数。
(二)新课探究
1、给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③公差可以是正数、负数,也可以是0。
2、推导等差数列的`通项公式
若等差数列{an }的首项是 ,公差是d, 则据其定义可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
进而归纳出等差数列的通项公式:
= +(n-1)d
此时指出:
这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
– =d
– =d
– =d
– =d
将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d
当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。
接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
第二问实际上是求正整数解的问题,而关键是求出数列的通项公式
例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 (由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式 = +(n-1) d会知三求一
(六)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
四、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
高中数学数列教案 3
教学目标
1.理解数列概念,了解数列和函数之间的关系
2.了解数列的通项公式,并会用通项公式写出数列的任意一项
3.对于比较简单的数列,会根据其前几项写出它的个通项公式
4.提高观察、抽象的能力.
教学重点
1.理解数列概念;
2.用通项公式写出数列的任意一项.
教学难点
根据一些数列的前几项抽象、归纳数列的通项公式.
教学方法
发现式教学法
教具准备
投影片1张
教学过程
(1)复习回顾
师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一
下函数的定义.
生:(齐声回答函数定义).
师:函数定义(板书)
如果A、B都是非空擞集,那么A到B的映射就叫做A到B的函数,记作:,其中
(Ⅱ)讲授新课
师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)
4,5,6,7,8,9,10.①
②
1,0.1,0.01,0.001,0.0001….③
1,1.4,1.41,1.41,4,….④
-1,1,-1,1,-1,1,….⑤
2,2,2,2,2,
师:观察这些例子,看它们有何共同特点?
(启发学生发现数列定义)
生:归纳、总结上述例子共同特点:
1.均是一列数;
2.有一定次序
师:引出数列及有关定义
一、定义
1.数列:按一定次序排列的一列数叫做数列;
2.项:数列中的`每一个数都叫做这个数列的项。
各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。
如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。
3.数列的一般形式:,或简记为,其中是数列的第n项
生:综合上述例子,理解数列及项定义
如:例②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等。
师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:
项
↓↓↓↓↓
序号12345
师:看来,这个数的第一项与这一项的序号可用一个公式:来表示其对应关系
即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项
生:结合上述其他例子,练习找其对应关系
如:数列①:=n+3(1≤n≤7)
数列③:≥1)
数列⑤:n≥1)
4.通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。
师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。
生:根据扭注通项公式画出数列①,②的图象,并总结其特点。
图3?1
特点:它们都是一群弧立的点
5.有穷数列:项数有限的数列
6.无穷数列:项数无限的数列
二、例题讲解
略
高中数学数列教案 4
一、设计思想
本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。
二、教学目标
1.通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;
2.通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;
3.在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;
4.通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
5.从现实出发,学生能抽象出现实生活中的数列
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
三、教学过程
活动一:生活中实例,概括出数列的概念
1.背景引入:
观察以下情境:
情境1:各年树木的枝干数: 1,1,2,3,5,8,...
情境2:某彗星出现的年份: 1740,1823,1906,1989,2072,...
情境3:细胞分裂的个数: 1,2,4,8,16,...
情境4 : A同学最近6次考试的名次17, 18, 5, 8, 10, 8
情境5:奇虎360最近一个周每日的收盘价:
问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?
或者有什么共同特征?
共同特点:
(1)排成一列,可以表达信息
(2)顺序不能交换,否则意义不一样.
设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。
2.数列的概念
(1)数列、项的定义:
通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。
问题2:能否用准确的语言给我描述一下情境4中的数列?
设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。
问题3:这两个数都是8,表示的含义是否一样?
不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。
排在第一位的叫首项,排在第二位的叫第二项……排在第n位的'数
问题4:根据对数列的理解,你能否举出数列的例子?
答:我校高一年级各班的人数。
问题5:能否抽象出数列的一般形式?
a1,a2,a3,...,an,...,记为?an?
(2)数列与集合的区别
问题6:数列是集合吗?
通过与集合的特点进行对比,更清楚的数列的特点。
让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。
(3)数列的分类?能不能不讲?
活动二:思考数列的表示——通项公式
3.通项公式的概念
问题7:对于上述情境中的数列,有没有更简洁的表示方式?
学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念
一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.
4.通项公式的存在性
问题8:是否任意一个数列都能写出通项公式?
写出通项公式
活动三:用函数的观点看待数列
5.数列也是函数
问题9:在数列?an?中,对于每一个正整数n(或n1,2,...,k?),是不是都有一个数an与之对应?
问题10:数列是不是函数?
通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。
把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。
6.用函数的观点看待数列
问题11:所以,除了用解析式表示数列,还有哪些方法?
再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。
例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象:(?1)nn(1)an?; (2).an?n n?12
问题12:数列的图象的特点是什么?
数列的图象是一些孤立的点。
通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。
课堂小结
1.数列的概念;
2.求数列的通项公式的要领.
高中数学数列教案 5
一、设计思想
数学是思维的体操,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。
本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
二、教材分析
高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。
本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
三、学情分析
学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。
四、教学目标
1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。
2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。
3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。
五、重点、难点
教学重点:等差数列的概念及通项公式的推导。
教学难点:对等差数列概念的理解及学会通项公式的推导及应用。
六、教学策略和手段
数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的'问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。
教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。
七、课前准备
学生预习,教师做好课件并安装好。
八、教学过程
创设情景,引入概念
设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。
师生活动:
情景1:
师—把班上学生学号从小到大排成一列:
学生:
师—这是数列吗?你能归纳出它的通项公式吗?
学生—是,师—把上面的数列各项依次记为,填空:
学生—填空并归纳出一般规律:
师—上面这个规律还有其他形式吗?
学生—或者写成
注:要对强调,原因在于有意义。
师—你能用普通语言概括上面的规律吗?
学生—自由发言,选择最恰当的语言。
上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。
情景2:看幻灯片上的实例
(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):
48,53,58,63
(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)
18,15.5,13,10.5,8,5.5
(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:
本利和=本金(1+利率存期)
时间年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)
各年末本利和(单位:元)
10072,10144,10216,10288,10360
师:上面的三个数列又分别有什么规律呢?
学生—(1),(2),(3),师—归纳上面数列的共同特征:
(d是常数),师—满足这种特征的数列很多,我们有必要为这样的数列取一个名字?
学生(共同)—等差数列。
提出课题《等差数列》
师—给出文字叙述的定义(学生叙述,板书定义):
一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。
对定义进行分析,强调:= 1 GB3 ①同一个常数;= 2 GB3 ②从第二项起。
师—这样的数列在生活中的例子,谁能再举几个?
学生—某剧场前8排的座位数分别是
52,50,48,46,44,42,40,38.
学生—全国统一鞋号中成年女鞋的各种尺码分别是
21,21.5,22,22.5,23,23.5,24,24.5,25
抢答:观察下列数列是否为等差数列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
注:常数列也是等差数列,公差是0。
推进概念,发现性质
设计意图:概括等差中项的概念。总结等差中项公式,用于发现等差数列的性质。
师生活动:
师—想一想,一个等差数列最少有几项?它们之间有什么关系?
学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。
设三个数成等差数列,则A叫a与b的等差中项。同时有A-a=b-A,说明:(1)上面式子反过来也成立。(2)等差数列中的任意连续三项都构成等差数列,反之亦成立。
(三)探究通项公式
设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。
师生活动:
师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。
先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。
师—若一个数列是等差数列,它的公差是d,那么数列的通项公式是什么?
启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。
学生—即:
即:
即:
由此可得:
师—从第几项开始归纳的?
学生—第二项,所以n≥2。
师—n=1时呢?
学生—当n=1时,等式也是成立,因而等差数列的通项公式
师—很好!
高中数学数列教案 6
教学目标
1.通过教学使学生理解的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为).
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——. (这里播放变形虫分裂的多媒体软件的第一步)
(板书)
1.的定义(板书)
根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出的定义,标注出重点词语.
请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的.数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:
2.对定义的认识(板书)
(1)的首项不为0;
(2)的每一项都不为0,即;
问题:一个数列各项均不为0是这个数列为的什么条件?
(3)公比不为0.
用数学式子表示的定义.
是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?
式子给出了数列第项与第项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.
3.的通项公式(板书)
问题:用和表示第项.
①不完全归纳法
②叠乘法…这个式子相乘得,所以.
(板书)(1)的通项公式
得出通项公式后,让学生思考如何认识通项公式.
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.
1.本节课研究了的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用.
四、作业(略)
五、板书设计
1.等比数列的定义
2.对定义的认识
3.等比数列的通项公式
(1)公式
(2)对公式的认识
高中数学数列教案 7
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析
教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想
1、教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2、学法
引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标
通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
五、教学重点与难点
重点:
①等差数列的概念。
②等差数列的'通项公式的推导过程及应用。
难点:
①理解等差数列“等差”的特点及通项公式的含义。
②理解等差数列是一种函数模型。
关键:
等差数列概念的理解及由此得到的“性质”的方法。
六、教学过程
教学环节情境设计和学习任务学生活动设计意图创设情景在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何“。
这个问题该怎样解决呢?倾听课堂引入探索研究由学生观察分析并得出答案:
在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,…
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5观察分析,发表各自的意见引向课题发现规律思考:同学们观察一下上面的这两个数列:
0,5,10,15,20,…… ①
18,15.5,13,10.5,8,5.5 ②
看这些数列有什么共同特点呢?观察分析并得出答案:
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于5;
对于数列②,从第2项起,每一项与前一项的差都等于-2.5;
由学生归纳和概括出,以上两个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。通过分析,激发学生学习的探究知识的兴趣,引导揭示数列的共性特点。
总结提高[等差数列的概念]
对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。学生认真阅读课本相关概念,找出关键字。通过学生自己阅读课本,找出关键字,提高学生的阅读水平和思维概括能力,学会抓重点。提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A
所以就有让学生参与到知识的形成过程中,获得数学学习的成就感。由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。
9是7和11的等差中项,5和13的等差中项。
看来,从而可得在一等差数列中,若m+n=p+q
则深入探究,得到更一般化的结论引领学习更深入的探究,提高学生的学习水平。
总结提高[等差数列的通项公式]
对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。由学生经过分析写出通项公式:
高中数学数列教案 8
教学目标:
1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:
等差数列的概念及通项公式。
教学难点:
(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:
多媒体、实物投影仪
教学过程:
一、复习引入:
1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。
2.由生活中具体的数列实例引入
(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:
你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?
(2)某剧场前10排的座位数分别是:
48、46、44、42、40、38、36、34、32、30
引导学生观察:数列①、②有何规律?
引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。
二.新课探究,推导公式
1.等差数列的概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。
在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的.学习。
[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。
2.等差数列通项公式
如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
将这(n-1)个等式左右两边分别相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。
三.应用举例
例1求等差数列,12,8,4,0,…的第10项;20项;第30项;
例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
四.反馈练习
1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。
五.归纳小结提炼精华
(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式an= a1+(n-1) d会知三求一
六.课后作业运用巩固
必做题:课本P284习题A组第3,4,5题
高中数学数列教案 9
[教学目标]
1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]
1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:
(1)对等差数列中“等差”两字的把握;
(2)等差数列通项公式的推导。
[教学过程]
一、课题引入
创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)
二、新课探究
(一)等差数列的定义
1、等差数列的定义
如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?
(2)公差d是哪两个数的差?
(二)等差数列的通项公式
探究1:等差数列的通项公式(求法一)
如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?
根据等差数列的定义可得:
因此等差数列的通项公式就是:,
探究2:等差数列的通项公式(求法二)
根据等差数列的定义可得:
将以上-1个式子相加得等差数列的通项公式就是:,
三、应用与探索
例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?
(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的`正整数解。
例2、在等差数列中,已知=10,=31,求首项与公差d.
解:由,得。
在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。
巩固练习
1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。
2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。
四、小结
1.等差数列的通项公式:
公差;
2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;
3.判断一个数列是否为等差数列只需看是否为常数即可;
4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.
五、作业:
1、必做题:课本第40页习题2.2第1,3,5题
2、选做题:如何以最快的速度求:1+2+3+???+100=
高中数学数列教案 10
一、教学目标
【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。
【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。
【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
二、教学重难点
【教学重点】
等差数列的概念、等差数列的通项公式的推导过程及应用。
【教学难点】
等差数列通项公式的推导。
三、教学过程
环节一:导入新课
教师PPT展示几道题目:
1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。
在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。
教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。
环节二:探索新知
1.等差数列的概念
学生阅读教材,同桌讨论,类比等比数列总结出等差数列的.概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
问题1:等差数列的概念中,我们应该注意哪些细节呢?
环节三:课堂练习
抢答:下列数列是否为等差数列?
(1)1,2,4,6,8,10,12,……
(2)0,1,2,3,4,5,6,……
(3)3,3,3,3,3,3,3,……
(4)-8,-6,-4,-2,0,2,4,……
(5)3,0,-3,-6,-9,……
环节四:小结作业
小结:等差数列的概念及数学表达式。
关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。
【高中数学数列教案】相关文章:
高中数学 数列教案01-03
高中数学数列教案12-30
高中数学数列教案5篇12-30
高中数学等差数列教案09-25
高中数学数列说课稿03-30
高三数学数列教案01-17
数学等差数列教案05-31
数学等差数列教案02-25
高三数学数列教案7篇01-17