人教版高一数学上册教案
作为一位杰出的老师,很有必要精心设计一份教案,借助教案可以更好地组织教学活动。我们应该怎么写教案呢?下面是小编精心整理的人教版高一数学上册教案,希望对大家有所帮助。
人教版高一数学上册教案1
一、等差数列
1、定义
注:“从第二项起”及
“同一常数”用红色粉笔标注
二、等差数列的通项公式
(一)例题与练习
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件; f
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1—an=d (n≥1) ;h4z+0"6vG
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1。 9 ,8,7,6,5,4,……;√ d=—1
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
3。 0,0,0,0,0,0,……。; √ d=0
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
其中第一个数列公差<0,>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的`教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1) 当n=1时,(1)也成立, 所以对一切n∈N﹡,上面的公式都成立 因此它就是等差数列{an}的通项公式。 在迭加法的证明过程中,我采用启发式教学方法。 利用等差数列概念启发学生写出n—1个等式。 对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。 在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求 接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用 同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。 (三)应用举例 这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。 例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项 (2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项? 在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an 例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。 在前面例1的基础上将例2当作练习作为对通项公式的巩固 例3 是一个实际建模问题 建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米? 这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点) 设置此题的目的: 1。加强同学们对应用题的综合分析能力, 2。通过数学实际问题引出等差数列问题,激发了学生的兴趣; 3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法 (四)反馈练习 1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。 2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。 目的:对学生加强建模思想训练。 3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列 此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。 (五)归纳小结 (由学生总结这节课的收获) 1。等差数列的概念及数学表达式. 强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数 2。等差数列的通项公式 an= a1+(n—1) d会知三求一 3.用“数学建模”思想方法解决实际问题 (六)布置作业 必做题:课本P114 习题3。2第2,6 题 选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求) 五、板书设计 在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。 一、教材的本质、地位与作用 对数函数(第二课时)是20xx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。 二、教学目标 根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下: 学习目标: 1、复习巩固对数函数的图像及性质 2、运用对数函数的性质比较两个数的大小 能力目标: 1、培养学生运用图形解决问题的意识即数形结合能力 2、学生运用已学知识,已有经验解决新问题的能力 3、探索出方法,有条理阐述自己观点的能力 德育目标: 培养学生勤于思考、独立思考、合作交流等良好的个性品质 三、教材的重点及难点 对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小 教学中将在以下2个环节中突出教学重点: 1、利用学生预习后的心得交流,资源共享,互补不足 2、通过适当的练习,加强对解题方法的掌握及原理的理解 另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小 教学中会在以下3个方面突破教学难点: 1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。 2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。 3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。 四、学生学情分析 长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。 学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。 五、教法特点 新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。 六、教学过程分析 1、课件展示本节课学习目标 设计意图:明确任务,激发兴趣 2、温故知新(已填表形式复习对数函数的图像和性质) 设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。 3、预习后心得交流 1)同底对数比大小 2)既不同底数,也不同真数的对数比大小 以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固 设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。 4、合作探究——同真异底型的对数比大小 以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。 设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的'一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。 5、小结 以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法 6、思考题 以20xx高考题为例,让学生学以致用,增强数学学习兴趣。 7、作业 包括两个方面: 1、书写作业 2、下节课前的预习作业 七、教学效果分析 通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。 【高一数学上册教案】相关文章: 数学高一上册教案12-17 高一上册的数学教案02-14 数学高一上册教案8篇12-18 数学高一上册教案(8篇)12-19 数学高一上册教案(通用8篇)12-20 人教版高一数学上册教案2篇02-07 高一上册的数学教案3篇02-14 数学上册教案01-15 高一数学的教案08-26人教版高一数学上册教案2