现在位置:范文先生网>教案大全>数学教案>六年级下册数学教案

六年级下册数学教案

时间:2023-01-08 17:00:33 数学教案 我要投稿

六年级下册数学教案精选15篇

  在教学工作者实际的教学活动中,通常需要准备好一份教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!以下是小编收集整理的六年级下册数学教案,欢迎大家分享。

六年级下册数学教案精选15篇

六年级下册数学教案1


  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的`人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计: 整理和复习

  比例的意义

  比例 比例的性质

  解比例

  正反比例 正方比例的意义

  正反比例的判断方法

  比例应用题 正比例应用题

  反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

六年级下册数学教案2

  学习目标:

  1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的'图形。

  2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

  学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

  学习难点:在方格纸上画出线段旋转90度后的图形

  课前准备:钟表,课件,教具

  学习过程

  环节学案

  回顾旧知

  1、物体的运动有( )和( )。

  2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。

  自主探索

  1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。

  2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

  3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

  4、旋转三要素指( )( )( )。

  合作探究

  当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

  达标检测

  基础性作业:

  课本29页练一练1、2题(看课件)。

  一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

  提高性作业:

  1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

  拓展性作业:

  如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

六年级下册数学教案3

  教学内容:

  P702– 75

  教学目标:

  1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

  2、培养学生仔细审题,认真思考,探索规律的良好习惯。

  教学重难点:

  理解正比例的意义和性质。

  教学过程:

  一、复习引入:

  我们已学了一些常见的数量关系,谁能来说一说:

  1、路程、速度、时间;

  2、单价、数量、总量;

  3、工作效率、工作时间、工作总量;

  ……

  二、先观察、后概括:

  1、例1:一列火车行驶的时间和路如下表:

  时间(小时)

  1

  2

  3

  4

  5

  6

  ……

  路程(千米)

  60

  120

  180

  240

  300

  360

  ……

  观察上表,回答下列问题:

  ⑴、表中有哪两个量是相关联的.?

  ⑵、路程是怎样随着行车时间的变化而变化的?

  ⑶、相对应的路程和时间的比分别是多少?比值是多少?

  从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。

  写成关系式是:=速度(一定)

  2、新改例2:一种铅笔,支数与总价如下表:

  支数)

  1

  2

  3

  4

  5

  6

  ……

  总价(元)

  0.3

  0.6

  0.9

  1.2

  1.5

  1.8

  ……

  由上表可以发现什么特征?

  (哪几个量是相关联的?这两个相关联的量之间有什么关系?)

  写成关系式是:=单价(一定)

  比较例1、例2,它们有什么共同点?

  概括:

  ⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

  ⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

  = K(一定)

  (结合例1、例2说一说)

  3、练一练P75

  三、巩固练习:

  1、 P76看后判断,并连起来说一说。

  2、 P76 – 2先观察,再分析。

  3、 P76 – 3

  四、小结:

  要判断两个量是否成正比例,依据什么来判断?

  1、两个相联的量?

  2、一个量随着另一个量的变化而变化,并且它们的比值一定。

  五、作业:

  P76 3 4

六年级下册数学教案4

  【教材分析】

  正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

  【学情分析】

  学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

  【设计理念】

  数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

  1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

  2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

  3.注重积累数学学习经验,渗透数学思想方法。

  4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

  【教学目标】

  1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

  3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

  【教学重点】

  理解正比例的意义。

  【教学难点】

  掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  【教学准备】

  教学课件。

  【教学过程】

  一、激趣设疑,铺垫衔接。

  1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

  2.结合现实情境回忆常见的数量关系。

  【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的`基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

  二、合作探究,发现规律。

  1.教学例1

  出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

  谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

  组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

  谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

  预设:

  (1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

  (2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

  根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

  提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

  根据学生的回答,板书:

  提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

  请学生完整地说一说表中的路程和时间成什么关系。

  【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

  2.教学“试一试”。

  让学生自主读题,根据表中已经给出的数据把表格填写完整。

  谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

  提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

  根据学生的回答,板书:

  让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

  【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

  3.抽象概括

  请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

  启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

  根据学生的回答,板书:,并揭示课题。

  请大家想一想,生活中还有哪些成正比例的量?

  【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

  三、分层练习,丰富体验

  1.“练一练”第1题。

  出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

  讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

  学生按要求活动,并组织反馈。

  提问:张师傅生产零件的数量和时间成正比例吗?为什么?

  2.“练一练”第2题。

  出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

  3.练习十第1题。

  先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

  4.练习十第2题。

  出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

  出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

  结合学生的回答小结。

  追问:判断两种相关联的量是否成正比例关系,关键看什么?

  【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

  四、反思回顾,提升认识

  谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

  【板书设计】

  正比例的意义

  两种相关联的量

六年级下册数学教案5

  教学内容:

  课本第31页例3和“练一练”,练习五第10-15。

  教学目标:

  1、使学生结合具体情景,继续学习用分数乘法解决求“一个数的几分之几

  是多少”的简单实际问题,丰富对用分数表示的数量关系的认识,拓展对分数乘法意义的理解。

  2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  教学重难点:

  分数乘法的意义以及计算方法。

  课前准备:

  多媒体课件

  教学过程:

  一、教学导入

  出示例3中的条形图。

  问:从图中你能知道什么?

  引导学生用分数描述图中的'数量关系。

  如:把黄花看作单位“1”,红花是黄花的11/10,绿花是黄花的6/10(3/5);把红花看作单位“1”,,黄花是红花的10/11,绿花是红花的6/11等。

  二、组织探究

  1、教学例3。

  出示题目:黄花有50朵,(1)红花比黄花多1/10,红花比黄花多多少朵?

  引导学生看图思考:红花比黄花多的朵数是图中的哪个部分?它是那种花朵数的1/10?也就是多少朵的1/10?

  追问:50朵的1/10是什么?指出:“红花比黄花多1/10 “,是把黄花朵数看作单位”1“,也就是红花比黄花多的朵数是50朵的1/10 。

  指名列式。

  问:列式时是怎样想的?

  学生完成计算。

  2、学第(2)小题。

  出示:绿花比黄花少2/5,绿花比黄花少多少朵?

  学生尝试解答,指名板演。

  追问:绿花比黄花少2/5这个条件中,要把哪个数量看作单位”1“?要求”绿花比黄花少多少朵“,就是求多少朵的2/5?

  反思:你认为理解用分数表示的数量关系时,关键是什么?

  指出:理解用分数表示的数量关系时,关键是弄清这个分数是哪两个数量比较的结果,比较时把哪个量看作单位”1“的。

  3、做”练一练“

  学生独立完成。对有困难的学生,提示可以先按要求画一画,再完成填空。

  三、巩固训练

  1、做练习五第10题。

  先说出每个分数的意义,再把数量关系写完整。

  2、做练习五第11、12题

  独立解答,交流思考过程,集体订正

  四、课堂总结

  通过本节课的学习,你有什么收获?你在今天课堂上的表现怎样?

  五、布置作业

  练习五第13-15题。

  教学反思:

  通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3、练习五第6、7题。

  四、课堂总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、布置作业

  练习五第8、9题。

  教学反思:

六年级下册数学教案6

  教学目标

  1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

  2.训练学生认真审题,能够选择合理简便的解题方法。

  3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

  教学重点和难点

  教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

  教学难点:灵活、合理地运用不同的方法进行计算。

  教学过程设计

  (一)复习

  1.第74页第1题。

  (1)把下面的小数化成分数:

  0.125 0.3 0.5 0.6 0.25 0.75

  (2)把下面的分数化成小数:

  以上各题用投影片出示,指名口答。

  2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

  下面各题用什么方法进行计算比较简单?

  提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

  提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

  (二)学习新课

  以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

  (板书课题:分数、小数四则混合运算)

  (1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

  (2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

  (3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

  (1)审题:例5与例4有什么不同之处?

  (例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

  (2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的'方法。)

  (3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

  (4)全体同学在练习本上试做。

  (5)订正。

  (6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

  (7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

  ≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

  =1.625-1.169

  =0.456

  订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

  3.小结。

  两位同组的同学互相说一说:

  (1)分数、小数乘、除混合运算,怎样计算比较简便?

  (2)分数、小数四则混合运算,又怎样计算简便?

  看书质疑。

  (三)巩固反馈

  采用分小组巩固练习的形式。

  1.用题板做练习,大面积反馈。

  举题板订正,再把两种不同的计算方法进行比较:

  不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

  2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

  教师出示正确答案,哪组的同学都做对了就给予表扬。

  3.全体同学齐做。

  把题中的分数化成小数后再计算。(保留两位小数。)

  ≈13×0.56-16.24÷3.5

  =7.28-4.64

  =2.64

  (四)课堂总结

六年级下册数学教案7

  教学过程

  1、出示主题图。教材第2页主题图。

  2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)

  引出课题并板书:负数的初步认识

  1、教学例1 。

  (1)教师板书关键数据:0℃ 。

  (2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。

  比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。

  比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。

  (2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

  (4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

  2、学生讨论合作,交流反馈。

  (1)请同学们把图上其它各地的温度都写出来,并读一读。

  (2)教师展示学生不同的表示方法。

  (2)小结:通过刚才的'学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

  2、教学例2。

  (1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:

  像20xx,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的是支出的钱数。

  (2)教师:上述数据中500和-500意义相同吗?

  (500和-500意义相反,一个是存入,一个是支出)。

  你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?

  师把学生的表示结果一一板书在黑板上。

  4、归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

  (2)教师展示分类的结果,适时讲解。

  像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

  像-8,-4,-500,-20这样的数,我们把它叫做负数。

  (2)那么0应该归为哪一类呢?

  组织学生讨论,相互发表意见。

  (4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (5)你在什么地方见过负数?

  鼓励学生注意联系实际举出更多的例子。

六年级下册数学教案8

  教学目标

  1. 在具体情境中,通过画一画的活动,初步认识正比例图像。

  2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的

  变量的值。

  3.利用正比例关系,解决生活中的一些简单问题。

  教学重点

  1.在具体情境中,通过画一画的活动,初步认识正比例图象。

  2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  教学难点

  1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  2.利用正比例关系,解决生活中的一些简单问题。

  教学过程

  一、复习

  活动一:判断下面的量是否成正比例关系?

  1.每行人数一定,总人数和行数。

  2.长方形的长一定,宽和面积。

  3.长方体的底面积一定,体积和高。

  4.分子一定,分母和分数值。

  5.长方形的周长一定,长和宽。

  6.一个自然数和它的倒数。

  7.正方形的边长与周长。

  8.正方形的边长与面积。

  9.圆的半径与周长。

  10.圆的面积与半径。

  11.什么样的两个量叫做成正比例的量?

  二、新授

  活动二:探索一个数与它的5倍之间的关系。

  1.求出一个数的5倍,填写书上表格。自己独立完成。

  2.判断一个数的5倍和这个数有怎样的关系?说说你判断的理由。

  (一个数和它的5倍之间具有正比例关系。)

  3.根据上表,说出下图中各点的含义。(图见书上P22)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

  4. 连接各点,你发现了什么?

  (所描的点都在同一条直线上。)

  5.利用书上的图,把下表填完整。

  6.估计并找一找这组数据在统计图上的位置。

  自己独立完成。

  7.在统计图上估计一下,看看自己估计的是否准确。

  三、练习

  活动三:试一试。

  1. 在下图中描点(图见课本P22),表示第20页两个表格中的数量关系。

  2. 思考:连接各点,你发现了什么?

  活动四:练一练。

  1. 圆的半径和面积成正比例关系吗?为什么?

  教师讲解:因为圆的面积和半径的比值不是一个常数。

  2. 乘船的.人数与所付船费为:(数据见书上)

  (1)将书上的图补充完整。

  (2)说说哪个量没有变?(每人所需的乘船费用没有变化。)

  (3)乘船人数与船费有什么关系?(乘船费用与人数成正比例。)

  (4)连接各点,你发现了什么?(所有的点都在一条直线上。)

  3. 回答下列问题:

  (1)圆的周长与直径成正比例吗?为什么?

  (圆的周长与直径成正比例关系。)

  (2)根据右图,先估计圆的周长,再实际计算。

  ① 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

  ② 直径为15厘米的圆的周长估计值为(),实际计算值为( )。

  4.把下表填写完整。试着在上页第(1)题的图中描点表示上表中的数量关系,并连接各点,你发现了什么?(表格见书上)

  (所有的点都在同一条直线上。)

  四、课堂小结

  同学们,这节课我们再次巩固练习了正比例的相关知识。大家有什么收获?

六年级下册数学教案9

  教学重点:

  比例尺的意义。

  教学难点:

  将线段比例尺改写成数值比例尺。

  教学过程:

  一、引入

  教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

  请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

  二、教学比例尺的意义。

  1.什么是比例尺(自学书上内容,学生交流汇报)

  出示图例1

  在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2.介绍数值比例尺

  让学生看图。

  “我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

  3.介绍线段比例尺

  还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

  4.介绍放大比例尺

  出示图例2

  “在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

  学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

  比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

  相同点:都表示图上距离与实际距离的比。

  不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

  5、总结

  比例尺书写特征。

  (1)观察:比例尺1:100000000

  比例尺1/5000000

  比例尺2:1

  (2)看一看,比例尺书写形式有什么特征。

  为了计算方便,通常把比例尺写成前项或后项是1的比。

  6、比例尺的化简和转化

  “我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

  说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

  “是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

  “50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

  “现在单位统一了,是多少比多少,怎样化简?”

  图上距离:实际距离=1:5000000

  教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

  最后教师指出

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

  ③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

  三、巩固练习

  1、做一做。

  过程要求

  (1)学生独立完成。(要求写出数值比例尺)

  (2)同学之间互相交流。

  (3)汇报交流结果。

  2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

  四、课堂小结

  (本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

  教学目标:

  1、理解比例的意义,会根据比例的意义组成比例。

  2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

  3、感受生活中处处有数学,激发学习数学的兴趣。

  教学重、难点:理解比例的'意义。

  教学方法:自主合作,讨论交流。

  教学过程:

  一、复习旧知,目标展示。

  1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

  2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

  3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

  【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

  4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

  二、合作交流,探究新知。

  〈一〉教学比例的意义。

  1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

  2、自主探究,初步形成印象。

  (1)两个比相等可以用等号连接吗?

  (2)你能在练习本上写出两个可以有用等号连接的比吗?

  (3)和你小组内同学交流你写出的式子,并说明理由。

  (4)学生汇报。

  3、形成概念。

  (1)像黑板上我们所列出的这些式子叫做比例。

  (2)你能用自己的话说说什么是比例吗?

  (3)老师小结:表示两个比相等的式子叫做比例。

  4、深化概念,巩固练习。

  (1)你认为组成比例的关键是什么吗?(两个比的比值相等)

  (2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

  〈二〉教学比例各部分的名称。

  1、比例各部分有自己的名称?你知道吗?

  (预设:学生如果不清楚的话,教师说明比例各部分的名称)

  2、找出黑板上这几个比例的内、外项。

  3、比可以写成分数的形式,比例也可以写成分数形式。

  (1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

  (2)找出它们的内、外项。

  (3)你发现什么规律了吗?

  〈三〉比和比例的区别。

  1、小组讨论、交流。

  2、全班交流。

  3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

  三、巩固练习。

  1、填空。

  (1)、表示()的式子叫做比例。

  (2)、判断两个比能否组成比例,要看它们的()是不是相等。

  (3)、写出比值是的两个比():()和():(),写成比例是()。

  (4)、选取48的4个因数组成一个比例是()。

  2、课本32页国旗尺寸成比例吗?

  3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

  (1)学生独立思考后,小组交流。

  (2)全班交流。

  (3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

六年级下册数学教案10

  教学内容:

  课本第98页例8,“试一试”和“练一练”,练习十六第4-6题。

  教学目标:

  1、了解储蓄的含义。

  2、理解本金、利率、利息的含义。

  3、掌握利息的计算方法,会正确地计算存款利息。

  教学重点:

  本金、利息和利率的含义。

  教学难点:

  利用计算公式进行利息计算。

  课前准备:

  存款单、有关利率表格

  教学过程:

  一、创设情境,引入课题

  1、从师生谈话中引出“压岁钱”的话题。

  师:老师与你们一样大的时候,过年最开心的也是能拿压岁钱,那么你们现在过年一般能拿到多少压岁钱?

  师:我相信每个同学都有压岁钱拿,但是不管多少,都是长辈对我们的关心。你们拿了那么多的压岁钱,是不是都买鞭炮放了?那么你们是如何处理压岁钱的`呢?(引导学生存入银行)

  2、联系生活,理解有关利息的知识。

  师:压岁钱有那么多,除了一部分消费外,多余的存银行。那么你能不能向大家介绍一下有关储蓄的知识?(生1:定期利率比活期利率高。生2:活期可以自由地拿,定期不到时间要用身份证才能拿。……)

  师:储蓄有定期和活期之分,定期储蓄的利率较高,就是拿到的什么比较多?(生齐答:利息。师板书)

  师:那么谁来举例说明一下哪一部分是利息呢?

  (师:那么存人的一千元又叫什么呢?(生:本金。师板书)

  师:看来定期储蓄的利率比较高,定期储蓄中又分了一些类型,其中最主要的就是整存整取。我们来看下这张表,你知道了些什么?(出示例1的储蓄年利率表)

  二、探究新知

  1、出示例8。

  学生读题后说说题目的意思

  教师提问:应该选择哪种年利率来计算?为什么?

  学生独立尝试后交流。

  让学生把计算利息的公式补充完整。补充问题:两年后他从银行拿回的钱一共是多少?

  2、完成试一试。

  学生独立完成。完成后交流核对。

  3、完成练一练。

  三、巩固练习

  完成练习十六第4题。

  四、课堂总结

  什么是利息?什么是本金?利息的多少一般由什么决定?你还知道什么?如何计算利息?

  五、布置作业

  练习十六第5、6题。

六年级下册数学教案11

  教学目标:

  1:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2:引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  3:通过合作与交流,感受学生学习的乐趣。

  教学重点:掌握比的各部分名称,能正确地读、写比。

  教学难点:理解比的意义。

  法制渗透:《中华人民共和国国旗法》

  第十九条在公共场合故意以焚烧、毁损、涂划、玷污、践踏等方式侮辱中华人民共和国国旗的,依法追究刑事责任;情节较轻的,参照治安管理处罚条例的处罚规定,由公安机关处以十五日以下拘留。

  教学过程:

  一、引入。

  观察图片后,谈话引入。

  1.教学比的意义。

  (1)教学同类量的比。

  A、20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。

  在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

  提问:根据你所获得的信息,你想到了什么?

  根据学生的回答,引入法制教育。

  中华人民共和国国旗法》

  第十九条在公共场合故意以焚烧、毁损、涂划、玷污、践踏等方式侮辱中华人民共和国国旗的,依法追究刑事责任;情节较轻的,参照治安管理处罚条例的`处罚规定,由公安机关处以十五日以下拘留。

  学生再次熟悉题目后,提问:杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?

  引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?

  B、这两个关系都是用什么方法来求的?(除法)

  C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

  D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

  (2)教学不同类量的比。

  A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

  路程÷时间=速度,算式:42252÷90

  B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

  (3)归纳比的意义。

  A、通过上面两个例子,你认为什么是比?

  学生试说,教师总结:两个数相除,又叫做两个数的比。

  2.教学比的写法、比的各部分名称。

  比的写法。

  15比10记作15∶1010比15记作10∶15

  42252比90记作42252:90

  比的各部分名称。

  A、学生自学课本,小组讨论概括知识点。

  B、小组汇报并举例:

  “:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:

  15∶10=15÷10=1

  12……

  三、巩固练习。

  完成课本“做一做”第1题。

  四、布置作业。

  课本练习十一的第1题。前项比号后项比值

六年级下册数学教案12

  教学内容:

  教材第4页的例2和“试一试”、“练一练”,练习二第1-4题。

  教学目标:

  1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

  2.培养解决简单实际问题的能力,体会生活中处处有数学。

  3.进一步体会知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。

  教学重点:

  掌握百分数在实际生活中的应用。

  教学难点:

  正确、熟练地运用百分数的知识进行纳税的计算。

  预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?(课前布置学生上网查询相关信息)

  教学准备:

  教师准备有关纳税的一些资料;教学光盘及多媒体设备

  教学过程:

  一、认识、了解纳税

  纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

  税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到20xx年,全年税收收入已达到30866亿元。(进行纳税意识教育)

  提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税

  二、教学新课

  1.教学例2.

  出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的 6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。

  提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!

  学生尝试练习,集体订正,教师板书算式。

  强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。

  2.我们怎样计算呢?

  方法1:引导学生将百分数化成分数来计算。

  方法2:引导学生将百分数化成小数来计算。

  3.做“试一试”

  提问:这道题先求什么?再求什么?

  生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。

  学生板演与齐练同时进行,集体订正。

  4.学生在课本上完成练一练。

  三、同步练习

  1.练习二的第1、2题。

  指名学生读题,让学生说明算式里的每个数据的意思。

  学生独立思考后练习,交流时请学生说说解题思路,教师及时了解学生解答情况。

  2.练习二第3题。

  学生读题后,教师简单介绍个人所得税的知识。

  学生独立思考并列算式计算,然后交流。

  四、拓展提高

  1.练习二的第4题。

  我国20xx年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。

  不超过500元的 5%

  超过500元~20xx元的. 10%

  超过20xx元~5000元的 15%

  ------

  李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?

  在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?

  介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。

  将三段不同的收税看作三个档次,先用总收入减去1600,看超过的部分是属于哪个档次,如果超过的部分少于500,属第一档次,用超出的部分乘以5%;如果超过的部分大于500小于20xx就属第二档次,第一档次的税肯定要交,用500乘5%,再用(超出部分-500)乘10%,然后相加;如果超过的部分大于20xx小于5000就属第三档次,第一、二档次的税肯定要交,用500乘5%,1500乘10%,(超出部分-20xx)乘15%,再相加。

  关键是这里第一、二档次的,要全额交税。

  五、课堂回顾

  提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

  六、布置作业

  课内作业:补充习题

  板书设计:

  纳税问题

  营业额×5%=营业税

  60×5%=3(万元)

  答:应缴纳营业税3万元。

  爸爸月收入2500元,应分两段来纳税:

  2500-1600=900元

  500×5%=25元

  (900-500)×10%=40元

  25+40=65元

  答:爸爸应缴纳个人所得税65元

六年级下册数学教案13

  教学内容:

  人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1、联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2、让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3、能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:

  掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数和一个数乘分数的意义。

  教学准备:

  课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1、教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“2/

  9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2、小组交流,汇报结果

  预设:(1)2/

  9+2/

  9+2/

  9=6/

  9=2/

  3(个);

  (2)2/

  9×3=6/

  9=2/

  3(个);

  (3)3×2/

  9=6/

  9=2/

  3(个);

  (4)3个2/

  9就是6个1/

  9就是6/

  9,再约分得到2/

  3(个)。(根据学生发言依次板书)

  3、比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,

  生1:每个人吃2/

  9个,3个人就是3个2/

  9相加。

  生2:3个2/

  9个相加也可以用乘法表示为2/

  9×3。

  提出质疑:3个2/

  9相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个2/

  9相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4、归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】

  (二)分数乘整数的计算方法

  1、不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/

  9×3的计算过程用式子该如何表示?预设,

  生1:按照加法计算2/

  9×3=2/

  9+2/

  9+2/

  9=6/

  9=2/

  3(个)。

  生2:2/

  9×3=6/

  9=2/

  3(个)。

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/

  9。

  2、归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3、先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】

  二、巩固练习,强化新知

  1、例1“做一做”第1题

  师:说出你的思考过程。

  2、例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的1/

  2是多少。”

  (3)出示第2小题学生自练。引导说出:“12×1/

  4表示求12 L的1/

  4是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1、出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/

  10,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的3/

  10是多少。”

  2、比较两种意义

  出示:一袋面包重3/

  10千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的.意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】

  五、联系实际,灵活运用

  1、算式3/

  16+3/

  16+3/

  16+3/

  16可以列成_________× _________,表示;或者表示_________;

  也可以列成_________ ×_________,表示。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2、比较练习

  (1)一堆煤有5吨,用去了2/

  11,用去了多少吨?

  (2)一堆煤有2/

  11吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3、拓展练习

  1只树袋熊一天大约吃6/

  7 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】

  六、课堂小结,拓展延伸

  1、这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2、谁会用含有字母的式子表示分数乘整数的计算方法?a/

  b×c=ac/

  b,其中a,b,c均为整数且a≠0。

  【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】

六年级下册数学教案14

  教学目标

  1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

  2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

  3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

  教学重难点

  重点:理解反比例的意义、正反比例的比较。

  难点:正确判断两个量是否成反比例

  教学工具

  PPT课件

  教学过程

  (一)、回忆旧知,引出新课。

  1、复述回顾:

  (1)、什么叫做成正比例的量?

  (2) 判定两种量成正比例的关键是什么?

  (3)、判定下面两种量是否成正比例?

  A、轮船行驶的速度一定,行驶的路程和时间。

  B、每小时织布的米数一定,织布总米数和时间。

  C、当圆柱体的高度一定时,体积和底面积。

  2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? ﹙板书:成反比例的量﹚

  (二)、自主学习,探索新知。

  1.探究反比例的意义

  今天老师给大家带来了一个实验,在实验之前,提出实验要求。

  (1)、记录杯子里水的高度,把表格中补充完整。

  (2)、观察水的高度是如何变化的?

  教师播放实验。

  水的高度是怎样随着底面积的变化而变化的?

  3、观看实验记录单,回答三个问题。

  ①表格中有哪两种量?

  ② 水的高度是怎样随着底面积的变化而变化的?

  ③相对应的杯子的底面积和水的高度的乘积分别是多少?

  教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

  4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

  学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。

  3.说一说:生活中还有哪些量成反比例关系?

  师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

  (1)学生自由举例。

  (2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

  三、巩固练习。

  (一)、基础练习

  1、判断下面每题中的两种量是不是成正比例,并说明理由。

  (1)轮船行驶的`速度一定,行驶的路程和时间。

  (2)每小时织布的米数一定,织布总米数和时间。

  (3)当圆柱体的高度一定时,体积和底面积。

  (1)、表格中有( )和( )两种相关联的量。

  (2)、写出这两种量中相对应的两个数的积,并比较大小。

  (3)、这个积表示( )。

  (4)、表中的相关联的两种量成反比例吗?为什么?

  2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

  (1)煤的量一定,每天的烧煤量和能够烧的天数. ( )

  (2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )

  (3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )

  (4)华容做12道数学题,做完的题和没有做的题. ( )

  四、积极应用,拓展新知。

  出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

  学生小组内讨论,得出答案。

  五、拓展练习。

  1、判断下面每题中的两种量成比例吗?并说明理由。

  (1)、长方形的面积一定,它的长和宽。 ( )

  (2)、轮船行驶的速度一定,行驶的路程和时间。 ( )

  (3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )

  (4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )

  (5)、矿泉水瓶中喝掉的水和剩下的水。 ( )

  (6)、圆的半径和它的面积。 ( )

  (7)、铺地面积一定,方砖面积与所需块数。 ( )

  六、课堂小结。

  通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

六年级下册数学教案15

  教学内容:

  课本第79——80页例3和“练一练”,练习十三第3-5题。

  教学目标:

  1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

  2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,

  增强学生应用数学的意识。

  教学重难点:

  用分数乘法和减法解决一些稍复杂的实际问题。

  课前准备:

  课件

  教学过程:

  一、复习导入

  王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?

  全校的三好学生共有96人,其中男生占3/8,女生有多少人?

  学生独立解答后,让学生说说想的.过程。

  二、教学例3

  出示题目,要求学生默读。

  指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

  从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

  问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?

  教师指导学生画线段图。

  教师再根据线段图引导学生分析题意。

  “要求今年有多少班,可以先算什么?

  请你试着把这道题做一下。

  教师找出不同的解法进行板演,并让学生说说思路。

  三、完成”练一练“

  1、做第1题。

  (1)引导学生画线段图理解题意

  (2)看线段图分析

  (3)学生独立完成,指名板演,集体评讲。

  2、做第2、3题。

  (1)让学生独立完成,指名板演,集体评讲。

  (2)让学生说说自己的想法。

  四、巩固提高

  1、完成练习十三第3题。

  学生直接把结果写在书上,集体核对。

  2、练习十三第4题。

  3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

  集体评讲。

  五.本课总结。

  通过这节课的学习,你有什么收获呢?

  六、布置作业

  练习十三第5题。

【六年级下册数学教案】相关文章:

六年级下册数学教案01-14

六年级下册数学教案01-19

人教版六年级下册数学教案03-14

【推荐】六年级下册数学教案02-11

【热门】六年级下册数学教案02-15

小学六年级下册数学教案02-13

六年级下册数学教案【推荐】02-13

人教版六年级下册数学教案06-17

新六年级下册数学教案02-28

六年级下册数学教案15篇01-08