现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学下册教案

七年级数学下册教案

时间:2023-01-09 17:16:05 七年级数学教案 我要投稿

七年级数学下册教案(汇编15篇)

  作为一位兢兢业业的人民教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?下面是小编为大家收集的七年级数学下册教案,仅供参考,欢迎大家阅读。

七年级数学下册教案(汇编15篇)

七年级数学下册教案1

  教学目标:

  1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

  2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

  教学重点:理解有序数对的概念,用有序数对来表示位置。

  教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

  教学过程

  一、创设问题情境,引入新课

  展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

  原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

  二、师生共同参于教学活动

  (1)影院对观众席所有的`座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

  师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

  生:不能,要确定还必须知道“排数”。

  (2)教师书写平面图通知,由学生分组讨论。

  今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。

  师:你们能明白它的意思吗?

  学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

  师:请同学们思考以下问题:

  ①怎样确定你自己的座位的位置?

  ②排数和列数先后须序对位置有影响吗?

  生:通过讨论,交流后得到以下共识:

  ①可用排数和列数两个不同的数来确定位置。

  ②排数和列数的先后须序对位置有影响。

  (3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

  (4)在生活中还有用有序数对表示一个位置的例子吗?

  学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。

  例如:人们常用经纬度来表示,地球上的地点

  三、巩固练习

  让学生完成p46的练习。

  四、布置作业

  1、课本习题6,1,1。

  2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?

  1 2 3 4 5 6 7 8

  五、教后反思

  师:谈谈本节课,你有哪些收获?

  由同学交流解决问题,教师设疑为以后的学习奠定基础。

七年级数学下册教案2

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的.口又怎么变化?

  教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

  [巩固练习](教科书5页练习)已知,如图, ,求: 的度数

  [小结]

  邻补角、对顶角.

  [作业]课本P9-1,2P10-7,8

七年级数学下册教案3

  一、教学目标

  1、知识与技能

  (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2、过程与方法目标:

  (1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

  (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的`概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

  2、在组长的组织下进行讨论、交流。(约5分钟)

  3、小组分任务展示。(约25分钟)

  4、达标检测。(约5分钟)

  5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么

  (二)小组合作交流,探究新知

  1、观察下图,回答问题:(五组完成)

  大象距原点多远两只小狗分别距原点多远

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。

  2、做一做:

  (1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2

(2)求下列各组数的绝对值:(一组完成)

  (1)4,-4;

(2)0.8,-0.8;

  从上面的结果你发现了什么

  3、议一议:(八组完成)

  (1)|+2|=,1=,|+8.2|=;5

(2)|-3|=,|-0.2|=,|-8|=.

(3)|0|=;

  你能从中发现什么规律

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1

  (2)求出(1)中各数的绝对值,并比较它们的大小

  (3)你发现了什么

  2、比较下列每组数的大小。

  (1)-1和–5;(五组完成)(2)

  (3)-8和-3(七组完成)

  5和-2.7(六组完成)6五、达标检测:

  1:填空:

  绝对值是10的数有()

  |+15|=()|–4|=()

  |0|=()|4|=()

  2:判断

  (1)、绝对值最小的数是0。()

  (2)、一个数的绝对值一定是正数。()

  (3)、一个数的绝对值不可能是负数。()

  (4)、互为相反数的两个数,它们的绝对值一定相等。()

  (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

  六、总结:

  1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

  2.绝对值的性质:正数的绝对值是它本身;

  负数的绝对值是它的相反数;0的绝对值是0.

  因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

  七、布置作业

  P50页,知识技能第1,2题.

七年级数学下册教案4

  教学目标

  1.知道有效数字的概念;

  2.会按要求进行近似数的运算

  教学过程

  一、创设情境,导入新课

  1.什么叫实数?实数怎么分类?

  2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?

  3.做一做

  如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?

  二、合作交流,探究新知

  1 交流上面问题的做法

  (1)估计同学们会有两种做法:

  用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)

  (2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:

  如果没有两种做法,也要想办法引出这两种做法

  两种做法的答案不同,哪一种答案正确呢?

  请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?

  这时两种做法的答案就一样了。

  从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。

  2、引入有效数字的概念

  在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?

  先思考:0.010256精确到小数点后面第三位,等于多少呢?

  0.0102560.0103

  近似数0.0103有三个有效数字1、0、3

  现在你能说说,什么叫近似数的有效数字吗?

  从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。

  考考你:1 近似数0.03350有几个有效数字,分别是______________________.

  2 125万保留两个有效数字等于__________

  3 有_______个有效数字。

  3、怎样进行近似值的运算?

  在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。

  例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。

  (2)在进行近似数的乘法和除法运算中,参与运算的.每一个数应多取一位有效数字。

  例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)

  考考你:1.计算(精确到小数点后面第二位)(1),(2)

  2.计算(保留三个有效数字)(1) (2)

  三、应用迁移,巩固提高

  例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?

  变式:上面问题中27倍改为:8倍,其他不变

  例4 已知求a+b的值。

  例5 设a、b为实数,且求的值。

  四、反思小结,拓展提高

  这节课,你认为最重要的是什么?

  1.有效数字的概念;2.实数的近似数的计算

七年级数学下册教案5

  教材分析:

  平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要

  教学目标:

  知识技能:

  1.掌握平行线的三个性质

  2.会用平行线的性质进行有关的简单推理和计算

  3.通过对比,理解平行线的性质和判定的区别

  过程与方法:

  在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力

  情感、态度与价值观:

  让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度

  教学重点:

  平行线的'三个性质的探索

  教学难点:

  平行线的性质和判定的区别以及应用它们进行简单的推理

  教学过程:

  1、创设情境:

  (1)、回顾直线平行的条件。(学生回答后,教师板书。)

  (2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

  [设计意图]:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。

  2、探究新知:

  (1)、画平行线:

  教师通过多媒体演示。

  学生用方格或笔记本上的横线。

  [设计意图]:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

  (2)、问题1:如何得到同位角? a

  学生独立思考后回答:如可随意画 2 b

  条直线与两条平行线相交,如图1,∠1 c

  和∠2是同位角。 图1

  [设计意图]:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。

  问题2:你准备怎样去找∠1和∠2的关系?

  学生分组合作交流,进行探究后发表见解。

  学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。

  [设计意图]:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。

七年级数学下册教案6

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的.应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?

  例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授:

  我们再来看下面一个例子:

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?

  问:你能解决这个问题吗?有哪些方法?

  (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)&pide;44=264&pide;44=6(辆)

  列方程解应用题:

  设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。

  44x+64=328 (1)

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  (学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  小敏同学很快说出了答案。“三年”。他是这样算的:

  1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。

  2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。

  3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。

  你能否用方程的方法来解呢?

  通过分析,列出方程:13+x=(45+x) (2)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

七年级数学下册教案7

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的'底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

七年级数学下册教案8

  教学目标:

  1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

  2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

  3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

  教学重点:

  1.概率的定义及简单的列举法计算。

  2.应用概率知识解决问题。

  教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

  教学过程:

  一、复习旧知

  1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,

  不可能事件的有 ,必然事件有 ,不确定事件有 。

  2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

  3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

  4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

  5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

  求一个随机事件概率的基本方法是通过大量的'重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

  二、情境导入

  1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

  2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

  (1)会出现哪些可能的结果?

  (2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

  学生分组讨论,教师引导

  三、探究新知

  1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

  学生分组讨论,教师引导:

  (1)一次试验可能出现的结果是有限的;

  (2)每种结果出现的可能性相同。

  设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

  2、探究等可能性事件的概率

  (1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

  (2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

  学生先独立思考,然后同桌间讨论,教师巡视指导

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

  P(A)=/n

  必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

  3、应用新知

  例:任意掷一枚均匀骰子。

  1.掷出的点数大于4的概率是多少?

  2.掷出的点数是偶数的概率是多少?

  解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

  1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

  所以P(掷出的点数大于4)=2/6=1/3

  2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.

  所以P(掷出的点数是偶数)=3/6=1/2

  四、实践练习

  1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

  2、先后抛掷2枚均匀的硬币

  (1)一共可能出现多少种不同的结果?

  (2)出现“1枚正面、1面反面”的结果有多少种?

  (3)出现“1枚正面、1面反面”的概率有多少种?

  (4)出现“1枚正面、1面反面”的概率是1/3,对吗?

  3、将一个均匀的骰子先后抛掷2次,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的数之和分别是5的结果有多少种?

  (3)向上的数之和分别是5的概率是多少?

  (4)向上的数之和为6和7的概率是多少?

  五、课堂检测

  1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

  A 2/9 B 1/3 C 4/9 D以上都不对

  2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

  A 0.34 B 0.17 C 0.66 D 0.76

  3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

  A 3/10 B 7/10 C 2/5 D 3/5

  4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

  5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

  P(摸到白球)=

  P(摸到黄球)=

  6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

  六、课堂小结

  回想一下这节课的学习内容,同学们自己的收获是什么?

  1、等可能性事件的特征:

  (1)一次试验中有可能出现的结果是有限的。(有限性)

  (2)每种结果出现的可能性相等。(等可能性)

  2、求等可能性事件概率的步骤:

  (1)审清题意,判断本试验是否为等可能性事件。

  (2)计算所有基本事件的总结果数n。

  (3)计算事件A所包含的结果数。

  (4)计算P(A)=/n。

  布置作业:

  1、P148习题6.4知识技能 1.2.3

  2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

  板书设计

  等可能事件的概率(1)

  等可能事件的特征:

  1、 一次试验可能出现的结果是有限的;

  2、 每一结果出现的可能性相等。

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

七年级数学下册教案9

  人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案

  课题: 10.1 平方根(1)

  教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

  3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

  教学难点 根据算术平方根的概念正确求出非负数的算术平方根。

  知识重点 算术平方根的概念。

  教学过程(师生活动) 设计理念

  情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.

  这节课我们先学习有关算术平方根的概念.

  请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对

  本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知

  幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.

  提出问题

  感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:

  你是怎样算出画框的边长等于5dm的.呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值.

  练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题

  就是已知正方形的面积求正方形的边长,这与学生以前学过的

  已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

  归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

  一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.

  也就是,在等式 =a (x≥0)中,规定x = .

  思考:这里的数a应该是怎样的数呢?

  试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

  想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。

  算术平方根的概念比较抽象,原因之一是学生对石这个新

  的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.

  应用新知 例.(课本第160页的例1)求下列各数的算术平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为

  例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.

  探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

  教科书在边空提出问题“小正方形的对角线的长是多少”,

  这是为在10.3节介绍在数轴上画出表示 的点做准备.

  小结与作业

  课堂小结 提问:1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根?

  布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。

  4、 备选题:

  (1)判断下列说法是否正确:

  i. 是25的算术平方根;

  ii. 一6是 的算术平方根;

  iii. 0的算术平方根是0;

  iv. 0.01是0.1的算术平方根;

  ⑤一个正方形的边长就是这个正方形的面积的算术平方根.

  (2)下列各式哪些有意义,哪些没有意义?

  ①- ② ③ ④

  (3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

  在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算

  术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.

  通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣

  的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.

  通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.

七年级数学下册教案10

  【学习目标】

  1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

  2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

  3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

  【学习方法】自主探究与小组合作交流相结合.

  【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

  难点:对表格所表达的两个变量关系的理解。

  【学习过程】

  模块一 预习反馈

  一、学习准备

  1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.

  你能从生活中举出一些发生变化的例子吗?

  教材精读

  1.请同学们观察思考,逐一回答下面的问题:

  根据上表回答下列问题:

  (1)支撑物高度为70厘米时,小车下滑时间是多少?

  (2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?

  (3)h每增加10厘米,t的变化情况相同吗?

  (4)估计当h=110厘米时,t的值是多少,你是怎样估计的?

  (5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?

  在小车下滑的过程中:

  支撑物的高度h和小车下滑的时间t都在变化,它们都是 。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的`高度h是 ,小车下滑的时间t是 。

  在这一变化过程中,小车下滑的距离(木板的长度)一直 变化。像这种在变化过程中 的量叫做 。

  我国从1949年到1999年的人口统计数据如下(精确到0.01亿):

  (1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?

  (2)X和y哪个是自变量?哪个是因变量?

  (3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?

  (4)你能根据此表格预测20xx年时我国人口将会是多少?

  在人口统计数据中:

  时间和人口数都在变化,它们都是 。其中人口数随时间的变化而变化。时间是 ,人口数是 。

  归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况

  模块二 合作探究

  1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:

  (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

  (2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  (3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

  (4)粗略说一说氮肥的施用量对土豆产量的影响。

  模块三 形成提升

  某电影院地面的一部分是扇形,座位按下列方式设置:

  (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

  (2)第5排、第6排各有多少个座位?

  (3)第n排有多少个 座位?请说明你的理由。

  模块四 小结反思

  一、本课知识

  1. 变量、自变量、因变量:在某一变化过程中不断变化的量,叫做如果一个变量y随另一个变量x的变化而变化,则把x叫做 ,y叫做 。即先发生变化的量叫做 ,后发生变化或者随自变量的变化而变化的量叫做 。

  2.常量:略

 二、我的困惑

七年级数学下册教案11

  教学目标

  以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根.

  教学重、难点

  重点:了解平方根的概念,求某些非负数的平方根.

  难点:平方根的意义.

  教学过程

  一、提出问题,创设情境.

  问题1、要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?

  问题2、已知圆的面积是16πcm2,求圆的半径长.

  要想解决这些问题,就来学习本节内容.

  二、想一想:

  1、你能解决上面两个问题吗?这两个问题的实质是什么?

  2、25的平方根只有5吗?为什么?

  3、-4有平方根吗?为什么?

  三、知识引入:

  一个正数a的平方根有两个,它们互为相反数.我们用a表示a的正的平方根,读作

  “根号a”,其中a叫做被开方数.这个根叫做a的算术平方根,另一个负的`平方根记为-a.0的平方根是0,0的算术平方根也是0,负数没有平方根.

  求一个数的平方根的运算叫做开平方.

  四、能力、知识、提高

  同学们展示自学结果,老师点拔

  1、情境中的两个问题的实质是已知某数的平方,要求这个数.

  2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根.

  如52=25,(-5)2=25∴25的平方根有两个:5和-5.

  3、任何数的平方都不等于-4,所以-4没有平方根.

  五、知识应用

  1、求下列各数的平方根

  ①49②1.69③(-0.2)2

  2、将下列各数开平方

  ①1②0.09

七年级数学下册教案12

  一、教学目标

  (一)教学目标

  1.了解平方差公式的几何背景.

  2.会用面积法推导平方差公式,并能运用公式进行简单的运算.

  3.体会符号运算对证明猜想的作用.

  (二)能力目标

  1.用符号运算证明猜想,提高解决问题的能力.

  2.培养学生观察、归纳、概括等能力.

  (三)情感目标

  1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的'乐趣.

  2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.

  二、教学重难点

  (一)教学重点

  平方差公式的几何解释和广泛的应用.

  (二)教学难点

  准确地运用平方差公式进行简单运算,培养基本的运算技能.

  三、教具准备

  一块大正方形纸板,剪刀.

  投影片四张

  第一张:想一想,记作(1.7.2 A)

  第二张:例3,记作(1.7.2 B)

  第三张:例4,记作(1.7.2 C)

  第四张:补充练习,记作(1.7.2 D)

  四、教学过程

  Ⅰ.创设问题情景,引入新课

  [师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.

  这个正方形的面积是多少?

  [生]a2.

  [师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?

  [生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).

  [师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.

  (教师可巡视同学们拼图的情况,了解同学们拼图的想法)

七年级数学下册教案13

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的.世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

  第八环节 作业布置

七年级数学下册教案14

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

  【教法说明】

  同小学算术中除法一样—除以一个数等于乘以这个数的.倒数,所以必须以学好求一个有理数的倒数为基础学习.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  学生活动:口答以上题目.

  【教法说明】

  在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】

  教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.计算:8÷(-4).

  计算:8×()=? (-2)

  8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

  【教法说明】

  通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-6.5)÷0.13;

  (3)()÷(); (4)÷(-1).

  学生活动:

  1题让学生抢答,教师用复合胶片显示结果.

  2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】

  此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0.

  【教法说明】

  通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1 计算:

  (1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

  (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2 化简下列分数

  例3 计算

  (1)()÷(-6);

  (2)-3.5÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】

  例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了及倒数的概念,回答问题:

  1.的倒数是__________________();

  学生活动:分组讨论。

  【教法说明】

  对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

  八、随堂练习

  1.填空题

  (1)的倒数为__________,相反数为____________,绝对值为___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互为倒数,则;

  (7)或、互为相反数且,则,;

  (8)当时,有意义;

  (9)当时,;

  (10)若,,则,和符号是_________,___________.

  2.计算

  (1)-4.5÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作业

  (一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

  2.计算:(1)()×()÷();

  (2)-6÷(-0.25)×.

  3.当,,时求的值.

  (二)选做题:1.填空:用“>”“<”“=”号填空

  (1)如果,则,;

  (2)如果,则,;

  (3)如果,则,;

  (4)如果,则,;

  2.判断:正确的打“√”错的打“×”

  (1)( );

  (2)( ).

  3.(1)倒数等于它本身的数是______________.

  (2)互为相反数的数(0除外)商是________________.

  【教法说明】

  必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

  选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

  十、板书设计

七年级数学下册教案15

  一、教材分析

  同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

  二、教学目标

  知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

  过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的'多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

  情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

  三、教学重难点

  教学重点:同底数幂乘法运算法则及其应用。

  教学难点:同底数幂乘法运算法则的探索及灵活运用。

  突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

  四、教学过程设计

  本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

  第一环节旧知链接

  活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

  2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

  设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

  第二环节情境引入

  活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

  2、.计算下列各式:

  (1)102×103;

  (2)105×108;

  (3)10m×10n(m,n都是正整数).你发现了什么?

  3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

  (学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

  设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。

  第三环节新知探究,归纳法则

  活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

  (1)将引例中的各算式改写成乘法的字母算式。

  (2)观察计算结果有什么规律?

  (3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

  (4)验证你的猜想。

  (5)小结归纳法则。

  (小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

  同底数幂相乘,底数不变,指数相加。

  am· an=am+n(m,n是正整数)

  设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

  活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

  am· an· ap = am+n+p

  法则应用注意事项:(1)等号左边是同底数幂相乘法。

  (2)等号两边的同底相同。

  (3)等号右边的指数等于左边的指数和。

  (4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

  设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

  第四环节活学活用

  活动内容一:

  例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

  (3)-x3.x5(4)b2m.b2m+1

  (学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

  设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

  活动内容二:

  例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

  (独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

  设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

  第五环节巩固练习

  活动内容:课本随堂练习

  1.计算:

  (1)52×57;(2)7×73×72;

  (3)-x2·x3;(4)(-c)3·(-c)m.

  2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

  3.解决本节课一开始比邻星到地球的距离问题.

  (小组讨论、交流、展示。自主探究完成。)

  设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

  第六环节课堂小结

  活动内容:这节课你学到了哪些知识及哪些数学思想?

  (鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

  设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

  第七环节布置作业

  习题7.1A组1.B组1、2、3

  设计意图:作业分层布置,因材施教,培养学生的自信心。

  四、教学设计反思:

  1.培养学生数学思想,让学生掌握方法

  在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

  2.改进教学和评价方式,为学生提供自主探索的机会

  数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

【七年级数学下册教案】相关文章:

七年级数学下册教案08-24

七年级数学下册教案01-01

数学下册教案03-16

七年级下册数学教案08-26

七年级数学下册教案【精】02-03

七年级数学下册教案【热门】02-04

【热】七年级数学下册教案02-04

人教版七年级数学下册教案01-29

【推荐】七年级数学下册教案02-15

【荐】七年级数学下册教案02-15