人教版六年级数学下册教案(合集15篇)
作为一位无私奉献的人民教师,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?下面是小编收集整理的人教版六年级数学下册教案,仅供参考,希望能够帮助到大家。
人教版六年级数学下册教案1
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。
(二)核心能力
在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。
(三)学习目标
1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。
2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。
(四)学习重点
圆锥体积公式的理解,并能运用公式求圆锥的体积。
(五)学习难点
圆锥体积公式的推导
(六)配套资源
实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水
二、教学设计
(一)课前设计
1.复习任务
(1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。
(2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。
设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的`应用,也为圆锥体积的推导埋下伏笔。
(二)课堂设计
1.情境导入
(出示沙堆)
师:你们有办法知道这个沙堆的体积吗?
学生自由发言,提出各种办法。
预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等
师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题
设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。
2.问题探究
(1)观察猜想
师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?
学生自由发言。
(圆柱,圆柱的底面是圆,圆锥的底面也是圆……)
师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)
学生猜想。
(2)操作验证
师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。
实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。
实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。
1号圆锥2号圆锥3号圆锥
次数
与圆柱是否等底等高
学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。
(3)交流汇报
①汇报实验结果
各组汇报实验结果。
②分析数据
师:观察全班实验的数据,你能发现什么?
(大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)
师:什么情况下,圆柱刚好能装下三个圆锥的水?
各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。
师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?
老师用标准教具装沙土再演示一次,加以验证。
③归纳小结
师:谁能来总结一下,通过实验我们得到的结果是什么?
(4)公式推导
师:你能把上面的试验结果用式子表示吗?(学生尝试)
老师结合学生的回答板书:
圆锥的体积公式及字母公式:
圆锥的体积=×圆柱的体积
=×底面积×高
S=sh
师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)
进一步强调等底等高的圆锥和圆柱才存在这种关系。
设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。
考查目标1、2
(5)实践应用
师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)
师:要求沙堆的体积需要已知哪些条件?
(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
学生试做后交流汇报。
已知圆锥的底面直径和高,可以直接利用公式
V=π()h来求圆锥的体积。
师:在计算过程中我们要注意什么?为什么?
注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。
3.巩固练习
(1)填空。
①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。
②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。
③圆锥的底面积是3.1m2,高是9m,体积是()m。
(2)判断,并说明理由。
①圆锥的体积等于圆柱体积的。()
②圆锥的体积等于和它等底等高的圆柱体积的3倍。()
(3)课本第34页的做一做。
①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?
②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)
4.课堂总结
师:这节课你收获了什么?和大家分享一下吧!
圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。
(三)课时作业
1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?
答案:30÷2=15(厘米)
×3.14×152×30
=235.5×30
=7065(立方厘米)
答:雕成的圆锥的体积是7065立方厘米。
解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2
2.看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)
解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。
①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.
②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.
③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.
以上三种情况计算并加以比较,得出结论。考查目标1、2
人教版六年级数学下册教案2
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的'推导过程。
教学资源:
PPT课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
人教版六年级数学下册教案3
一、教学目标
(一)知识与技能:使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
(二)过程与方法:
1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。
(三)情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。
二、教学重难点
教学重点:掌握圆柱的基本特征。
教学难点:高的`认识。
三、教学准备
教师:课件,长方体模型,圆柱模型。
学生:每生自带一个圆柱形物体,草稿纸。
四、教学过程
(一)复习旧知,引出课题
1.师:同学们,我们学过哪些立体图形?它们各有几个面?这些面是什么形状?生回答。(根据学生回答板书研究方法)动手操作:画、剪、比、量。
2.(课件出示)师:那下面的这些物体你认识吗?它们是什么形状?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。
3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)
(二)自主学习
学生仔细观察手中的圆柱模型,边看书边思考:
①圆柱的上、下两个面叫做什么?
②用手摸一摸圆柱周围的面,你发现什么?
③圆柱一共有几个面?是哪几个面?
④圆柱两个底面之间的距离叫做什么?在哪里?
及时练习(课件出示):让学生根据圆柱的特点判断下面的图形。
【设计意图】学生通过看一看,摸一摸,找一找,初步了解圆柱的特征,为后面突破难点打下基础。
人教版六年级数学下册教案4
教学目标:
使学生掌握条形统计图表,折线统计图表及扇形统计图的特点及制作步骤,进一步明确各种统计图表的适用范围。
进一步培养学生的分析、概括能力
渗透“实践第一”的观点
教学过程:
一、讲述练习
上几节课,我们一同学习了统计图表,通过这节课的练习,要求大家掌握各种统计图表的特点和制作步骤,进一步明确各种统计图表的适用范围,并能正确制作它们。
二、复习提问
1、统计图表有几种?绘制统计图表前必须先做哪些工作?(搜集资料、整理数据)
2、统计图表的纵栏目和横栏目怎样确定?怎样画才能做到美观大方?
3、制作统计图表一般分哪几个步骤?应注意些什么?
4、统计图有哪几种?积肥什么特点和作用?
5、统计图纵轴一个单位长度表示一定的数量,如何确定单位长度?绘制轴时应注意些什么?
6、制作统计图一般分几个步骤?
三、学生回答问题时,教师经过整理,总结归纳如下:
1、意义:把搜集的资料经过整理,填在一定格式表格内,用来反映情况、说明问题。
2、统计图 意义:把统计资料中的数量关系用图形表达出来
3、条形统计图 容易看出图中数量的'多少
4、折线统计图 清楚地表示出数量增减变化的情况
5、扇形统计图 清楚地表示出各部分同总数之间的关系。
练习:
完成教材71页练习十四的第6题。
让学生自己动手先绘制统计表,再绘制成折线统计图。教师巡回指导,发现问题及时指出纠正。强调栏目的分项及统计图的纵轴比例尺的画法。
总结各种统计图应用的不同范围。
人教版六年级数学下册教案5
教学内容:
九年制义务教育小学数学第十二册P31~32页
教学目标:
1、通过学习和操作,认识圆柱的特征,能看懂圆柱的立体图,认识圆柱的高和圆柱侧面的展开图。
2、使学生形成圆柱的清晰表象,能根据圆柱的特征辨认圆柱体,认识圆柱的高,并能想象出圆柱侧面的展开图,培养学生的空间观念。
3、通过观察、操作、思考、讨论等活动,培养学生探索和解决问题的能力。
教学重点:理解掌握圆柱的特征和侧面展开图
教学难点:使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长与圆柱底面周长,宽与圆柱的高之间的关系。
教学准备:
教师:课件,圆柱模型,卡纸做的长方形(长30 cm,宽20 cm),正方形。
学生:每生自带一个侧面包装好的圆柱形物体,剪刀。
教学过程:
一、创设情境,引入课题:
出示一个长方形小旗,快速旋转,让学生观察:看到了什么?(圆柱)
点出课题:圆柱的认识
对于圆柱一年级时我们已经有了初步认识,今天我们对它进行进一步的研究,相信将会对圆柱的认识更加深刻。
二、学习新知
1.认识圆柱的特征
(1)观察比较,建立表象
师:生活中的圆柱体很多,同学们都在那些地方见过圆柱?
课件展示老师搜集的圆柱图片,从实物中抽象出圆柱的立体图形。
(2)操作感知,归纳圆柱的特征
师:圆柱由那些面组成,这些面有什么特征?下面我们就利用准备好的圆柱通过看一看,摸一摸,滚一滚等方式对圆柱进行研究。重点解决以下问题:(课件显示)
圆柱由那些面组成?这些面有什么特征?
圆柱上下两个面大小相同吗?请你通过量一量,比一比等方式进行验证。
活动完成,汇报交流,教师及时板书,引导,得出圆柱的组成及特征。
2.认识圆柱的高
瞧,老师这还有两个圆柱呢。注意看,它们的底面相同,那它们的什么不同呢?那什么是圆柱的高呢?你认为圆柱的高指的是什么?谁能指一指?
课件讲解圆柱两个底面之间的距离叫做高。
让学生再指出几条高。体会高有无数条。并引导学生明白内部也有高。并用课件演示高一样长。课件出示:圆柱有无数条高,长度相等。
介绍生活中圆柱的高的不同叫法。
及时练习(课件展示)
这些问题孩子们轻而易举就解决了。看你们这么棒,老师手中的这个小圆柱也忍不住想请你们帮个忙了。它想知道自己身上的.侧面包装纸有多大。该怎么办呢?
3.研究圆柱的侧面展开图
(1)思考:你想怎样剪呢?剪完展开后会是什么形状呢?想一想。
(2)小组合作探究:(课件出示探究要求)
(3)活动完成后小组汇报。(找两组同学上去边演示边讲解,师适时追问并板书)长方形的长就是圆柱的底面周长,宽就是圆柱的高。
(4)师进行演示操作,并把侧面展开图贴在黑板上。
(5)课件演示侧面展开整个过程,让学生把整个过程理解消化。
(6)思考:圆柱的侧面展开图有没有可能是正方形呢?什么情况下是正方形呢?(用正方形纸演示)
小结:圆柱的侧面如果沿高剪开,侧面展开就是一个长方形或正方形,如果斜着剪开就是平行四边形,如果沿折线或取下剪开得到的将会是不规则图形。
这节课不知不觉中我们既认识了圆柱的特征,又研究了圆柱的侧面展开。同学们的学习效果如何呢?下面我们就来对自己作一检测。
三、巩固练习
1、概念辨析
2、辨一辨(哪个是圆柱的展开图)
3、创造圆柱
结束语:同学们,其实在刚才旋转创造圆柱的过程中,隐藏着一个奇妙的数学现象呢。想知道吗?(点动成线,线动成面,面动成体课件显示)有趣吗?在神奇的数学世界里,像这种有趣的现象还有许多,就等着你们去探索,去发现呢!
教学反思:
圆柱是一种常见的立体图形,在实际生活中,圆柱形的物体很多,学生对于圆柱都有初步认识。因此,在导入环节,我引导学生从平面图形联想到立体图形,感受“面动成体”从而引入新课。本课的重点是认识圆柱的特征。教学时我引导学生自己动手操作探究,研究圆柱的基本特征。
在探究的过程中,我努力为学生创设动手实践的机会,给学生足够的时间进行操作和思考,让学生获得丰富的活动经验。活动分两个层次进行:活动一研究圆柱特征,让学生通过看一看、摸一摸、滚一滚等方式进行研究,探索出圆柱的主要特征;活动二探究侧面展开图。通过这样的活动体验,让学生经历学习数学的过程,使学生在动手操作中充分感悟,形成表象,观察、比较、探索规律。
本节课属于空间与图形教学,它的另一个重要功能是培养学生的空间想象能力。因此我通过多个环节来发展学生的空间想象能力:
1、从长方形旋转得到圆柱引入新课。
2、在进行侧面展开之前,让学生先去想象展开后的形状,再去动手操作。
3、巩固练习创造圆柱中鼓励学生大胆去想象、创造圆柱。以此来培养学生的空间想象力,发展空间观念。
人教版六年级数学下册教案6
课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)
⊙回顾与整理
1.小数的意义。
过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?
预设
生1:半个可以用0.5来表示,一米半可以用1.5来表示。
生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。
2.小数的数位顺序表。
师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?
(课件出示数位顺序表,小数部分留白。指名回答,师填充)
3.小数的读法和写法。
(1)师:怎样读小数?怎样写小数?
预设
生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。
生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的`右下角,小数部分顺次写出每一个数位上的数字。
(2)写小数时需要注意什么?
(空位用“0”补足)
4.小数的分类。
(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?
预设
生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。
(2)谁能举例说明什么是有限小数?什么是无限小数?
预设
生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。
生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。
(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?
预设
生:无限小数可以分为无限不循环小数和循环小数。
(4)关于无限不循环小数和循环小数,你都了解哪些知识?
预设
生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π
生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…
生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。
5.小数的性质。
(1)师:谁能说说小数有怎样的性质?
预设
生:在小数的末尾添上0或者去掉0,小数的大小不变。
(2)理解小数的性质时,应该注意什么?
(提示:要注意是“小数的末尾”,而不是“小数点的后面”)
6.小数点位置的变化。
人教版六年级数学下册教案7
教案设计
设计说明
图形的放大与缩小是比的实际应用。根据《数学课程标准》中“要培养学生的应用意识”的理念,本节课在教学设计上积极引导学生用数学的眼光看待生活中的放大与缩小现象。为学生提供充分的探索空间,培养学生的空间观念。基于以上教学理念,本节课在教学设计上有以下特点:
1.联系生活实际,体会图形放大与缩小的应用价值。
教育家卢梭认为:教学应让学生从生活中,从各种活动中进行学习,通过与生活实际相联系,获得直接经验。因此,在教学中,注重数学与生活的联系,有效利用教材中的图片,使学生了解无论是照相还是用放大镜看书、用投影仪放大图表,都离不开图形的放大与缩小知识,这部分知识有很强的实用价值。
2.在观察、操作中理解图形放大与缩小的意义和方法。
在数学教学中,让学生经历观察、操作、交流的过程,可以帮助学生获得直接的感性认识,有利于学生对知识的理解。基于以上认识,教学中,注意引导学生借助对例题的探究,弄清图形放大与缩小的意义和方法,并能在方格纸上按一定的比画出放大与缩小后的图形,使学生认识到把一个图形按一定的比放大或缩小,只要把图形的各边按一定的比放大或缩小即可。同时,也使学生认识到把一个图形按一定的比放大或缩小后,只是图形的大小改变了,形状没有发生变化,从而真正理解并掌握图形的放大与缩小的意义。
课前准备
教师准备 PPT课件 纸卡
学生准备 方格纸
教学过程
情境导入
1.观察、感受图形的放大与缩小。
(1)观察、感受。
①出示写有“图形的放大与缩小”的纸卡。
提问:纸卡上写的是什么?
(纸卡上的字为小5号字,学生跃跃欲试后会有些失望,因为看不清)
②把纸卡放到展台上,调整缩放键,逐渐调大。
提问:纸卡上写的是什么?
生抢答:图形的放大与缩小。
(2)引导学生思考。
师:为什么纸卡上的字之前看不清,而现在看清了呢?
生:因为字被放大了。
2.结合生活实际,导入新课。
(1)过渡:生活中经常会遇到图形的放大与缩小现象,下面就让我们一起来感受一下图形的放大与缩小。
(课件出示教材59页主题图)
这些现象中,哪些是把物体放大?哪些是把物体缩小?
预设
生1:图1是把物体缩小。
生2:图2、图3、图4都是把物体放大。
(2)导入新课。
今天,就让我们从数学的.角度一起来探究图形的放大与缩小现象。(板书:图形的放大与缩小)
设计意图:创设一个感受图形的放大与缩小的情境,激发学生从数学的角度探究图形的放大与缩小现象的兴趣,使学生在观察、体验中初步感知图形的放大与缩小。
探究新知
1.探究把图形放大的意义和方法。
(1)课件出示教材60页例4。
(2)思考、交流。
提问:“按2∶1放大”是什么意思?
生:“按2∶1放大”就是把图形的各边的长放大到原来的2倍。
(3)画图方法。
①提问:以正方形为例,具体画图时应该怎样做?
预设
生:正方形原来的边长是3个单位长度,现在按2∶1放大后,边长应该是6个单位长度。
②画图。
(学生独立画放大后的正方形,教师巡视指导)
(4)完成例4。
①怎样画长方形?
预设
生:把长方形的长和宽分别放大到原来的2倍,画出长方形。
②怎样画三角形?
预设
生:把直角三角形的两条直角边分别放大到原来的2倍后,连接两条直角边的端点。
(可引导学生用数方格法验证,当直角三角形的两条直角边放大到原来的2倍时,直角三角形的斜边也放大到原来的2倍)
人教版六年级数学下册教案8
教学目标
1:能正确判断问题中数量之间的比例关系。
2:正确利用比例知识解决问题。
3:通过策略多样化的训练,培养学生的发散性思维。
教学重难点
教学重点:能用正、反比例知识解决实际问题。
教学难点:正确分析题中的比例关系,列出方程。
教学工具
课件
教学过程
一、复习铺垫,引入新课。
师:同学们,我们先来回忆一下有关正、反比例的知识。
师:判断下面每题中的两种量成什么比例?(课件出示)
(1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量. (4)每小时耕地的公顷数一定, 耕地的总公顷数和时间. ( 5)全校学生做操,每行站的人数和站的行数. 【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,前面我们学习了比例、正比例、反比例的意义,还学习了解比例。这节课我们就应用比例的知识解决生活中的`一些实际问题。板书课题《用比例解决问题》。
二、探究新知
1:(一)用正比例的知识解决问题(探究例5)
过渡语:看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)
师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?
学生自己解答,然后交流解答方法。
2:师:像这样的问题也可以用比例的知识来解决。
出示自学提纲。
(1)题目中有几个量。
(2) 谁和谁成什么比例关系?你是怎么判断的?
(3 )哪个量是固定不变的。
(4) 根据比例关系,列出等式。
3:学生交流自学结果,相互补充,呈现一个完整的解答过程。
师:谁来说说你是怎样用比例知识来解决问题的?
根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
4、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法。
5即时练习
过渡语:同学们帮助李奶奶解决问题,我们一起去看看王大爷家又发生了什么事情呢?
出示对话情景。
师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?
在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。
小结:用正比例解决问题的关键是找到不变量,只要两个量的比值一定,就可以用正比例关系解答。
(二)用反比例的知识解决问题(学习P62例6)
师:解决了生活中水的问题,下面我们一起看看生活的电中蕴含着什么数学问题。
1课件出示情境图,了解题目条件与问题。
生:独立解决,并在小组交流解题思路和计算方法。
学生汇报解题思路。
过渡语:像这样的问题也能用比例的方法解决。请同学们仿照正比例的解题方法,并参照课本62页的内容,自学例6.
生:交流汇报解题思路。
师:谁来和大家分享一下你们的结果。
师:(教师手指25x=100×5,x=20。)为什么这样列式?根据是什么?
生汇报:因为总的用电量一定,所以用电天数和每天的用电量成反比例.也就是说,每天的用电量和天数的乘积相等。
2.即时练习
课件出示:现在30天的用电量原来只够用多少天?
师:会解决吗?
生:独立解决,交流订正。
小结:解决这个问题的关键是找到哪两个量的乘积一定。只要两个量的乘积一定,就可以用反比例关系来解答。 3:总结用比例解决问题的几个步骤:
(1) 梳理相关联的两种量。
(2) 判断相关联的两种量成什么比例。
(3) 解比例。
(4) 用自己熟练的方法来检验。
三:巩固练习
1:小明买4支圆珠笔用6元。小刚想买3支同样的圆珠笔,要用多少钱?(要求用比例知识解)
学生自己独立解决问题并说说原因。
学情预设:小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。
2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支。
第2题,用反比例关系可以解决这个问题。
设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。
四:课堂小结
通过这节课的学习,你有哪些收获?谈谈你的感受。
板书
用比例解决问题
解:设李奶奶家上个月的水费是x元。 解:设原来5天的用电量现在可以用x天。
X:10=28:8 25x=100×5
8x=28×10 x=500÷25
X=35 x=20
答:李奶奶家上个月的水费是35元。 答:原来5天的用电量现在可以用20天
人教版六年级数学下册教案9
教学内容:
教材第10页
教学目标:
1、知道纳税的含义和重要意义,理解应纳税额和税率的含义。学会根据具体的税率计算税款。
2、在计算税率的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使每个学生都知道每个公民都有依法纳税的义务。
教学重点:
掌握税额的计算方法。
教学难点:
理解税收时的专有名词,理解税率的含义。
教法学法:
教法:引导阅读、例题讲解、练习巩固。
学法:课前预习、独立思考、合作交流。
教学准备:
多媒体课件
教学过程:
(一)创设情境,引入新课
1、(课件出示教材第10页主题图)同学们,我们的祖国正在蓬勃发展中,为了让祖国更强大,人民生活更美好,国家投入了大量的人力、物力来进行建设,你知道这些钱是哪来的呢?
2. 渗透法制教育:
(1)《宪法》第五十六条规定中华人民共和国公民有依照法律纳税的义务。
(2)《中华人民共和国税收征收管理法》第四条规定法律、行政法规规定负有纳税义务的单位和个人为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。
(3) 《中华人民共和国个人所得税法》
第一条 在中国境内有住所,或者无住所而在境内居住满一年的人,从中国境内和境外取得的所得,依照本法缴纳个人所得税。
【设计意图】通过图片展示,课前信息的收集和交流,引导学生理解依法纳税的`意义和重要性。渗透法制教育,引导学生学法、知法、懂法、用法。
(二)结合情境,探索新知
1.理解“税率”的含义(自学教材第10页)
(1)纳税的意义。
(2)根据自己的理解说说什么是纳税?什么是应纳税额?什么是税率?
(3)介绍自己所了解的纳税项目并进行简单介绍。
2.结合实例,进一步理解概念,并解决问题。
(1)课件出示教材第10页例3。
一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?
①读题,说说“营业额的5%”是什么意思?
这里的5%就是指的是税率。
②学生独立解答。
③集体交流,明确在这种情况下有如下关系成立:
营业额×税率=营业税。
(2)练习:出示教材第10页“做一做”。
李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?
①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?
②学生独立解决问题。
③集体交流反馈,知道在这种情况下有如下关系成立:
(总收入-免征收部分)×税率=个人所得税
(3)对比两道题,了解税收的算法各不相同,要根据实际情况进行计算。
(三)巩固练习
1、基本练习课件出示教材第14页练习二第6、10两题。
(1)李老师为某杂志审稿,得到300元审稿费。为此她需要按照3%的税率缴纳个人所得税,她应缴纳个人所得税多少元?
(2)小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余部分要按20%的税率缴税。这笔劳务费用一共要缴税多少元?
①学生独立完成。
②集体交流反馈。
③对比两题,看看两种交税方式有什么不同,想想计算时要注意什么。
(四)课堂总结,课外拓展。
1.今天这节课我们学了什么?在解决这类问题时我们要注意什么?
2、课后调查:
问一问爸爸妈妈每月收入是否需要缴纳个人所得税?了解我国对个人所得税的税收规定。
板书设计:
税率
应纳税额与各种收入的比率叫做税率。
应纳税额=营业额×营业税税率
例3:30×5%=1.5(万元)
人教版六年级数学下册教案10
教学内容:
教科书P23-26的内容,P24做一做,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:
掌握圆锥的特征。
教学难点:
正确理解圆锥的组成。
教具准备:
每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识 (直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(3)圆锥有一个曲面,圆锥的.这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页做一做的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:
观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
人教版六年级数学下册教案11
1.课件出示问题:
①圆柱两底面的大小有什么关系?你有什么办法证明?
②用直尺量一量你手中圆柱的高,你发现什么?
2.小组观察讨论。学生汇报:圆柱的两个底面都是圆,大小相等。(板书:面积相等)教师:你是怎样知道两个底面相等的?预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生演示验证)用哪种方法验证最简单?
【设计意图】小组合作学习,明确要求有利于学生有序地开展研究活动,在互相合作、互相补充中培养小组协作精神。动手操作有利于增强学生直观感知,让学生更好地理解圆柱的特征,通过多种方法的展示验证拓宽学生思维。
3.圆柱的高。课件显示:一个圆柱高度变化过程。请同学观察:圆柱的什么发生了变化?引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。(课件出示:圆柱两个底面之间的距离叫做高)教师:圆柱的高在哪些地方可以找到?根据学生的回答,课件上显示并用有颜色的线闪烁。 小结并板书:圆柱的高有无数条,高的长度都相等。教师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)教师:请看这样画一条线段是它的高吗?(三角板斜放)预设:高是两个底面之间的距离,应该垂直于两个底面。在我们的生活中,圆柱的高还有其他的说法。(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。
【设计意图】把抽象的立体图形还原于生活原形,更好帮助学生建立数学与生活的联系,为以后解决生活中的实际问题作好铺垫。
4.游戏拓展,感受平面图形与立体图形的转换
(1).出示一个硬纸板做成的长方形(长10cm,宽5 cm),用长尾夹将其10 cm的长固定在小木棒上。教师:这个简易的玩具跟我们今天所学的圆柱有什么关系呢?我们可以快速地转动木棒,看看会发生什么奇迹?学生:转动起来是一个圆柱。教师:是怎样的一个圆柱?你能用具体数据来描述一下吗?(底面半径为5 cm,高为10 cm的一个圆柱)
(2).如果我把这个长方形5cm长的那一边夹住后再转,转出来的圆柱跟刚才的一样吗?想象一下:这又是一个怎样的圆柱?(一边说一边用手势表示)出现的圆柱和你想象的大小一样吗?和我们生活中常见的什么物体大小差不多?
(3).同一个长方形,为什么转出来的圆柱不同?如果有一个长方形长是150厘米,宽是30厘米,快速旋转,会形成一个多大的'圆柱?
【设计意图】使学生从旋转的角度认识圆柱,即长方形的一条边快速旋转,形成圆柱形状,感受平面图形与立体图形的转换。通过想象、用手势比划大小、联系实际生活中的物品,最后看圆柱辨长方形,层层递进,发展学生的空间观念。
4. 小结圆柱特征。教师:现在谁来完整的说说圆柱有什么特征(看板书)?
(四)练习巩固(课件出示)
第1题:指出下列圆柱的底面、侧面和高。(根据学生回答,课件出示相应名称。)
第2题:(读出下面各圆柱的有关数据。单位:厘米)
叫学生回答。
第3题:判断。指名学生回答,并说理由。
第4题:想一想,围起来能得到什么图形?
【设计意图】通过练习,帮助学生进一步明确圆柱各部分的名称和特征,巩固所学的知识。
(五)课堂总结
这节课你有什么新的收获和感想?
板书设计:
圆柱的特征
两个底面(大小相等)
一个侧面(曲面)
圆柱的高有无数条
人教版六年级数学下册教案12
课 题 生活与百分数
教学目的
通过设计合理存款方案的活动,帮助学生进一步熟练地掌握利息的计算方法。经历信息搜集的全过程,提高搜集信息和综合运用信息解决百分数实际问题的能力。
重 点:经历搜集信息,运用信息解决问题的全过程。
难 点:设计合理的存款方案。
一、活动一
上节课我们学习了储蓄的相关知识,知道了生活中离不开百分数,今天我们就继续来研究生活与百分数。(板书:生活与百分数)
昨天我给大家留了一个作业,让你们去调查一下附近银行的最新利率,并与教材上的利率表进行对比,了解国家调整利率的原因。现在我们来交流一下。
(学生边说,教师边板书)
你们知道国家为什么要调整利率吗?(向学生介绍:国家为了社会经济的稳定和增长,需要根据不同的社会情况来随时调整利率。)
二、活动二
(1)调查理财方式。
师:除了以上关于利率的事情,你们还调查到了什么?
(2)提出探究问题。
课件出示:李阿姨准备给儿子存2万元,供他六年后上大学,请你帮李阿姨设计一下,黑板上的三种理财方式哪种的收益更高?
(3)学生用计算器独立完成后,进行小组内的交流。
请三位学生到黑板上板书三种方式的计算过程。
设计意图:在本环节的教学中,主要采取学生自主尝试解决问题的方式,先让学生讨论清楚三种储蓄方式,然后自己独立思考,再列式计算,最后通过对比发现本金和存期相同时,利率越高利息越高。
3、千分数和万分数
(1)千分数表示一个数是另一个数的千分之几的'数,叫做千分数。千分数也叫千分率。与百分数一样,千分数也有千分号,千分号写作“‰”千分号具有一切百分数的特点。例如:某市20xx年人口总数是3500000人,这一年出生婴儿28000人,该市的人口出生率是8‰。20xx年我国全年出生人口1604万人,出生率为11.93‰,死亡人口960万人,死亡率为7.14‰;自然增长率为4.76‰。
(2)万分数表示一个数是另一个数的万分之几的数,叫做万分数。万分数也叫万分率。与百分数和千分数一样,万分数也有万分号“?”。万分数也具有一切百分数和千分数的特点。例如:一本书有10万字,差错率不能超过1?,即该书的差错数不能超过10个。
三、全课总结
师通过今天的学习,你有什么新的收获?还有什么问题?
人教版六年级数学下册教案13
【教学内容】
教材第11-12页内容。
【教学目标】
1.理解储蓄的含义,明确本金、利息和利率的含义。能正确地进行利息的计算。
2.经历储蓄的认识过程,体验数学知识之间的联系和广泛应用。
3.激发学生学习兴趣,培养学生的应用意识和实践能力。
【教学重点】
掌握利息的计算方法。
【教学难点】
理解税率的含义。
【教学过程】
一、情境导入
快要到年底了,许多同学的爸爸妈妈单位里会在年底的时候给员工发放奖金。你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?
(启发学生说出各种可能性和原因)
师生共同小结:人们常常把暂时不用的钱存入银行,储蓄起来。这样不仅可以支援国家建设,使得个人钱财更加安全和有计划,还可以增加一些收入,即到期可以取出比存入的要多些的钱。
那么同学们知道为什么有时我们把钱存在银行,最后去取的时候钱会变多呢?
同学们知道吗,在不同的银行,有时我们可以得到不同的利息,因为它们的利率不同。那么,什么是利率呢?今天我们就一起来学习一下。
教师板书课题:利率。
二、探究新知
1.引导质疑,理解相关概念。
(1)学生围绕上面提出的问题,以小组为单位,阅读教科书第11页,不理解的内容可在小组讨论或做上记号。
学生看书时,教师巡视指导,并参与学生的讨论。
(2)汇报交流。
师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?
教师根据学生的回答板书:
存款方式
活期
定期:零存整取、整存整取
本金:存入银行的钱叫本金。
利息:取款时银行多支付的钱叫利息。
利率:利息和本金的比值叫做利率。
利息=本金×利率×存期
教师说明:利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。同一时期,各银行的利率是一定的。
2.教学例4。
(1)课件出示例4。
(2)引导学生理解题意,本题中本金、利率、存期分别是多少?
(3)到期后取回的钱除了本金,还应加上利息。
(4)学生独立完成,后交流展示。
方法一:5000×3.75%×2=375(元)
5000+375=5375(元)
方法二:5000×(1+3.75%×2)=5375(元)
(5)教师讲解:存期是几年,就要选取相对应的年利率。本金与年利率相乘,得出的`是一年的利息,求两年的利息就要乘2。
三、巩固练习
1.完成教科书第11页“做一做”。
先提问本题中本金、利率、存期分别是多少?后学生独立完成,集体订正。
2.完成教科书第14页第9题。
教师引导学生观察存款凭证后提问:存期是多长?半年用多少年计算?
四、课堂小结
这节课你学习了什么?你有哪些收获?
【板书设计】
【教后思考】
储蓄与人们的生活联系密切。本节课中概念较多,教学中结合具体实例,帮助学生理解本金、利息、利率的含义以及三者之间的关系,在引导学生探究学习的过程中,有意识地引导学生把所学知识运用到生活实践中去。学生在解决有关“利率”的问题时,可能会出现以下几个错误:计算利息时忘记乘存期;没有注意利率和存期的对应性;计算利息时,存款的利率是年利率,计算时所乘时间的单位应是年等。要将学生的错误转化成学习资源,在纠错中进一步理解和掌握知识。
人教版六年级数学下册教案14
教学内容:
人教版小学数学教材六年级上册第96~97页例1及相关练习。
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)
喜欢的项目
乒乓球足球跳绳踢毽其他人数
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目
乒乓、球足球、跳绳、踢毽、其他
人数
12 8 5 6 9
百分比
30% 20% 12.5% 15% 22.5%
【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知
1.认识扇形统计图
(1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么?
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的`大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250 g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250 g的关系,进而算出各种营养成分多少克。
人教版六年级数学下册教案15
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的.表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、 自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)
圆柱的侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积 = 圆柱的侧面积+底面积×2
=Ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。
【六年级数学下册教案】相关文章:
数学下册教案03-16
数学六年级下册教案02-17
六年级数学下册教案11-23
数学六年级下册教学教案01-06
六年级下册数学教案01-14
数学六年级下册圆柱的体积教案08-26
数学六年级下册教案15篇01-12
六年级数学下册人教版教案01-10
人教版六年级数学下册教案01-13
数学六年级下册教案(15篇)01-12