现在位置:范文先生网>教案大全>数学教案>六年级下册数学教案

六年级下册数学教案

时间:2023-01-19 16:16:12 数学教案 我要投稿

人教版六年级下册数学教案通用8篇

  作为一名优秀的教育工作者,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?以下是小编为大家收集的人教版六年级下册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版六年级下册数学教案通用8篇

人教版六年级下册数学教案1

  教学目标

  1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

  2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

  教学重点

  理解对称图形的概念及性质,会找对称轴。

  教学难点

  准确找全对称轴。

  教学准备

  1、教具:投影片、图片、剪刀、彩纸。

  2、学具:蝴蝶几何图片、剪刀、白纸。

  教学过程

  (一)导入新课

  你们看这些图形好看吗?观察这些图形有什么特点?

  (图形的左边和右边相同。)

  你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

  这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

  你怎么知道图形的左边和右边相同?(看出来的……)

  还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

  你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

  (二)讲授新课

  1、对称图形的概念。

  (1)对称图形和对称轴的定义。

  以剪出的图形为例,贴在黑板上。

  问:你们剪出的这些图形都有什么特点?

  (沿着一条直线对折,两侧的图形能够完全重合。)

  师:像这样的图形就是对称图形。(板书课题)

  折痕所在的这条直线叫做对称轴(画在图上)。

  问:现在谁能准确说出什么是对称图形?什么是对称轴。

  板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

  (2)加深理解概念。

  以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

  (3)巩固概念。(投影)

  ①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

  生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

  ②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

  投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

  生边回答老师边填在投影片上,并用小棒摆出对称轴。

  回答:

  1°任意三角形不是对称图形。

  2°等腰三角形是对称图形,有一条对称轴。

  3°任意梯形不是对称图形。

  4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

  5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

  6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

  7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

  8°等腰梯形是对称图形,有一条对称轴。

  ③小结。

  问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

  ④练一练

  打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

  第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

  2、对称图形的性质。

  (1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

  (2)测量并归纳性质。

  打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的.距离分别是多少厘米?(保留一位小数)

  认真度量,结果填在书上,你发现什么?

  投影订正。填后的结果:

  A点到对称轴的距离是0。6厘米。

  B点到对称轴的距离是1。2厘米。

  C点到对称轴的距离是0。6厘米。

  D点到对称轴的距离是1。2厘米。

  问:根据测量的结果你发现什么?

  (A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0。6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)

  问:根据度量结果,你们能总结出对称图形的性质吗?

  板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  (3)验证性质。

  量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

  看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

  (三)课堂总结

  今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

  (四)巩固练习

  1、第127页1题,画出对称轴。

  2、在你周围的物体上找出三个对称图形。

  3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

  4、你能否应用对称图特点,剪出美丽的窗花或五角星。

人教版六年级下册数学教案2

  教学目标

  1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2。初步学会用负数表示一些日常生活中的实际问题。

  3。能借助数轴初步理解正数、0和负数之间的关系。

  重点难点

  负数的意义和数轴的意义及画法。

  教学指导

  1。通过丰富多彩的生活情境,加深学生对负数的认识。

  负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

  2。把握好教学要求。

  对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的'意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

  3。培养学生多角度观察问题,解决问题的能力。

  教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  课时安排

  共分3课时

  教学内容

  负数的初步认识

  (1)(教材第2页例1)。

  教学目标

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  重点难点体会负数的重要性。

  教学准备多媒体课件。

  情景导入

  1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

  3。引出课题并板书:负数的初步认识

  (1) 新课讲授教学教材第2页例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

  课堂作业

  完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

  答案:—18℃温度低。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

人教版六年级下册数学教案3

  教学目标:

  1、理解“打折”的含义,会解答有关“打折”的实际问题。

  2、明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题。

  3、使学生体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确应用所学知识解决实际问题。

  教学重点:

  在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相等的,并能正确计算。

  教学难点:

  能应用“折扣”这个知识解决生活中的相关问题,体会数学的应用价值。

  教学过程:

  一、创设情境,激发兴趣。

  师:上个周末,我回家看父母,想给他们带礼物。(你们猜老师带了什么礼物回去?)我给他们一人买了一箱牛奶吧!(幻灯出示牛奶)回家前,我逛了县城的两家超市(广源百货和派拉朦百货),结果发现两家超市的标价不同。“广源超市标价:58元”;“派拉朦超市标价:56元”。(你们觉得老师应该去哪家超市买比较好?为什么?)说来也巧,那天广源超市因为店庆搞活动,“牛奶一律八折”;而我有派拉朦超市的会员卡,在里面购物能享受“九折优惠”。(同学们,你们觉得老师到底该“去哪家购买更实惠?”)

  师:我们要解决这个问题,就得先来了解一下“八折”、“九折”表示什么意思。今天我们就一起来探究有关“打折”的知识。(板书课题:折扣)

  [设计意图:采用轻松的谈话方式展开全课的教学,在平淡中显真实。利用学生在日常生活中触手可及的超市购物为例,创造教学氛围,让学生体会到数学知识来源于生活。]

  二、引入新课,感情新知。

  师:同学们,“打折”是什么意思?题中的“八折”、“九折”又是什么意思?

  (听课件中人物对话,了解折扣的所表示的意义。)

  师:小女孩和售货员阿姨的对话,你们听明白了吗?请你们也来说说看。

  课件播放商场打折的有关图片,请学生说一说“七折、五折、八点八折……”分别表示什么意思?

  师:现在就请同学们帮老师算一算:老师去哪家超市买牛奶更实惠?

  广源超市: 58×80%=46.4(元)

  派拉朦超市: 56×90%=50.4(元)

  师问:通过刚才的计算,谁能总结“现价”、“原价”、“折数”之间有什么样的关系?(现价=原价×折数)

  小结:解答这类应用题的实质就是求一个数的百分之几是多少,关键是要理解打折的含义,把折数化成百分数,再按解百分数应用题的方法解答。

  [设计意图:在学生理解了折扣的.含义的基础上,将学生熟悉的生活情景再次引入课堂作为教学切入点,引导学生进行知识迁移,使学生迅速进入学习状态,身临其境地去自主观察、自主分析、自主思考,在理解折扣意义的基础上体会根据原价和折数求现价的问题,实质就是求有关一个数的几分之几是多少的问题。]

  三、应用拓展,深化认识。

  1.情境展示:六一儿童节,儿童用品店对部分商品进行特价酬宾

  书包:原价105元,打7折 电动汽车:原价156元,打六折

  笔袋:原价35元,打九折 玩具机器人:原价220元,打四五折

  篮球:打六五折,现价52元 故事书:原价120元/套,现价96元/套

  书包、笔袋、电动汽车的现价是多少?

  2.玩具机器人比原价便宜多少钱?

  3.你知道故事书打几折吗?

  4.篮球的原价是多少?

  学生逐一独立试算——汇报——说解题思路

  [设计意图:继续创设情境,利用题与题之间的差异,让学生联系“求一个数在百分之几是多少”的知识,学会自主寻求解决“求比原价便宜多少”、“求折数”和“求原价”的方法。培养学生的解题能力,训练学生的发散思维、逆向思维。]

  综合应用,拓展新知。

  师:商家们为了招揽顾客,经常利用“打折”来促销商品,其实商家们还有很多不同促销手段。请看下面这道数学题

  学校要订购100本科普读物。每本原价:3元。现有三家书店,优惠方式各不相同。

  A书店:全部九折

  B书店:40本为一套,优惠价100元/套,不足一套的 按原价

  C书店:买四送一

  同学们,想一想,怎样才能花最少的钱购买到这100本科普读物呢?

  学生以小组合作的方式共同讨论,讨论后进行汇报。

  [设计意图:围绕本课教学目标,设计具有开放性的习题,采用小组合作的形式,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养学生自觉应用数学的意识。]

  四、课堂总结。

  师:同学们,通过这节课的学习,你们有什么收获?

  师:今天大家的表现都很出色。其实在生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家都能做个有心人!

  板书设计:

  折扣(打折)

  六折=60% 5.5折=55% 七折=70% 六五折=65%

  现价=原价×折数 广源超市:58×80%=46.4(元)

  派拉朦超市:56×90%=50.4(元)

  原价=现价÷折数

  折数=现价÷原价

人教版六年级下册数学教案4

  教学目标:

  1、理解折扣的意义。

  2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。

  教学重点:

  在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题数量关系是相同的,并能正确计算。

  教学难点:

  能灵活运用分数知识解决生活中的“折扣”问题。

  教学准备:

  教师:多媒体课件,投影仪。

  学生:课前了解有关商场打折的信息。

  教学过程:

  一、提示课题

  师:每到周末、节假日,我们总会看到商家为了招揽顾客,经常采用一些促销手段,你知道哪些促销手段?(学生结合经验自由回答,教师用课件出示打折的情境图。)

  师:今天我们来学习有关“折扣”的问题(板书课题)。

  二、出示目标

  师:本节课我们的目标是:(课件出示)

  1、理解折扣的意义。

  2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。

  师:为了达到目标,下面请大家认真地看书。

  三、出示自学指导

  (课件出示)认真看课本第97页“做一做“上面的内容,思考

  1、什么是打折扣?打八五折出售是什么意思?

  2、求“买这辆车用了多少钱”就是求什么?

  3、160×(1—90℅)中1—90℅求的是什么?你还会用别的方法解答这道题吗?

  5分钟后,比谁能做对与例题类似的题!

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测

  1.填空。

  (1)商品打八折出售,就是按原价的()%出售,也就是降价()%;打七五折出售,就是按原价的()%出售,也就是降价()%。

  (2)某种商品实际售价是原价的95%,也就是打()折出售;某种商品降价30%出售,也就是打()折出售。

  (学生口答)

  2.课本第97页做一做

  (找三名学生板演,其余学生做在练习本上,教师认真巡视,发现错例,板书于黑板上对应位置。)

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好依次进行更正)

  (二)讨论

  1、看百分数,认为对的举手。为什么?

  小结:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。一般情况下,不把折扣写成十分之几的分数形式。

  2、看三道算式,认为对的举手。为什么?

  3、看计算过程和结果,认为对的举手。

  4、评正确率、板书,并让学生同桌对改,更正错题。

  5、议一议:原价、现价、折数之间有什么关系?怎样解决求折扣的问题?

  (学生先独立思考再小组讨论)

  教师小结:现价=原价×折数(“求折扣”的应用题的数量关系与“求一个数的十分之几或百分之几十是多少”的应用题的.数量关系是相同的,关键是要先理解折扣的含义,再运用分数应用题的觖题方法来解决。)

  六、全课总结

  师:同学们,今天我们学习了有关折扣的知识,意义是什么?该怎样计算呢?计算时需要注意什么?

  下面,我们就运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练

  作业

  1、填一填

  (1)下列折扣化成百分数各是多少?填在()里。

  九五折()% 七折()%八八折()% 五折()%

  (2)一种商品现在打八折出售,比原价便宜了()%。

  2、妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?

  板书设计:

  折扣

  1、折扣的意义:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。

  2、折扣的计算方法:原价×折扣=现价

人教版六年级下册数学教案5

  教学目标:

  1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的'应用题。

  2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

  重点难点:

  理解成数和折扣的含义;理解成数与分数、百分数的含义。

  教学过程:

  一、复习准备

  1.把下列各数化成百分数。

  2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

  3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

  师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。

  板书:百分数应用题

  二、学习新课

  1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?

  2、成数的含义。

  师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。

  (1)口答

  “三成”是十分之(),改写成百分数是()。

  “三成五”是十分之(),改写成百分数是()。

  (2)七成 二成五 五成相当于百分之多少?

  3、售价加两成是什么意思?求售价应先算出什么?

  还可以怎样算?学生交流解题思路。

  4.出示例2。

  例2曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?

  (1)学生读题,理解题中的数学信息。

  (2)减产一成五是什么意思?

  (3)学生独立解答,指名学生说解题思路。

  师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

  板书设计:

  37.4×(1-15%)

  =37.4×0.85 =31.79(吨)

  答:今年产棉花31.79万千克。

人教版六年级下册数学教案6

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的`拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

人教版六年级下册数学教案7

  教学目标:

  1、知识目标:使学生明确“折扣”的具体含义,能熟练地进行“折扣”数和百分数的互化,进一步解决求一个数的百分之几的应用题的解法。

  2、能力目标:通过观察、思考、探索等教学活动,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。

  3、情感目标:增强学生对数学价值的体验,感受数学的魅力,能够用数学的眼光来看待周围的事物。

  教学内容:

  本节课的教学内容《折扣》是在学生学习了百分数意义以及百分数应用题的基础上进行学习的。“折扣”是在商品经济中应用比较广泛的一个概念,由于几折是十分之几,也就是百分之几十,因此,折扣也是百分数的实际应用。所以本节课的重点是要求学生能够正确理解折扣的含义,知道折扣应用题的数量关系,能够解决求一个数的百分之几的问题。难点是 “折扣”的有关计算。

  对象分析:

  《折扣》这个内容是现实生活商品买卖中经常遇见的“数学现象”,无论是聋人还是健听者对它并不陌生。虽然这样,但据了解、调查,我们的聋生对它只知其形而不解其意,虽然学生在此之前学过百分数应用题,但对聋生来说,其实际应用和现实意义却比不上折扣问题的应用。为此,本节课就是建立在学生已有知识(百分数的应用)的基础上,向学生传授的百分数应用的另一种既普遍又实在的生活形态——折扣。

  教学策略:

  认知心理学家奥苏贝尔有一句至理名言:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么,我将一言以蔽之:影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”把教学建立在学生已有的知识和生活经验之上,这是教学必须遵循的“金科玉律”。《折扣》其实是百分数的实际应用,我就是利用学生的已有知识和生活经验,通过提供丰富而带有折扣的生活图片创设情境,辅以多媒体教学手段,让学生从不同的场合去认识折扣,将实际生活融入教材,把知识与生活相结合,使学生在有效的教学活动中探索问题、发现问题、解决问题。

  整个教学过程的活动都是围绕学生的生活经验而设计,使学生体验到数学与实际生活是紧密联系的,是源于生活又作用于生活,更重要的是让学生增强了数学的应用意识,提高参与社会生活的能力。

  教学媒体:

  主要是利用PPT课件向学生展示现实生活中的折扣现象,创设情景,从而让学生从不同的场合去认识折扣,将实际生活融入到教材,从而激发学生的学习兴趣,达到学与用的相对统一。

  教学过程:

  一、创设情景,引入新知。

  PPT出示生活中打折的图片。

  教师:我们经常在商场看到把商品按“几折”出售。如上图中的“5.8折”、“五折”、“3.8” 折,这些都是我们生活中常见的打折销售,也就是我们今节课要学习的“折扣”。

  【以学生熟悉的生活素材引入教学,明确数学与生活的联系,使学生及时发现社会需要与所学知识的直接联系,能较好地激发他们的学习积极性,产生“我要学”的强烈要求。】

  二、分层探究,掌握新知。

  (一)折扣的具体含义。

  1、思考

  (1)商品为什么要打折出售?(工厂和商场,为了促销或处理积压商品等多种原因,有时将商品价格降低进行销售,这就是平常说的“打折”销售。)

  (2)“几折”表示什么意思?

  几折表示十分之几,也就是百分之几十。

  (3)商品打“八折”出售是什么意思?

  (八折=80℅,表示现价按原价的`80℅出售。)

  (4)原价、折扣与现价有怎样的数量关系?

  (原价 ×折扣数= 现价 )

  2、把折扣数和百分数进行互化。

  三八折=( )% 五折=( )%70%=( )折 68%=( )折

  承上启下:折扣数和百分数可以互化,那么你认为折扣应用题也就是什么应用题呢?会解答吗?

  二、“折扣”应用题的教学。

  1、准备题

  商店出售一种录音机,原价330元。现在打九折出售,现价多少元?

  (1)学生读题。

  (2)师问:打九折出售是什么意思?(学生口答。)

  (3)把哪个量看做单位“1”?怎么计算?(原价×折扣数=现价)

  (4)学生列式计算,然后师生板书订正。

  330×90℅

  = 330×0.9

  = 297(元)

  答:现价297元。

  2、教学“例7”。

  商店出售一种录音机,原价330元。现在打九折出售,比原价便宜多少元?(学生读题)

  (1)例7与准备题有何异同?(已知条件相同,所求问题不同。)

  (2)“要求便宜多少元?”怎样解答?(原价-现价=比原价便宜的钱数)

  (3)原价和现价题目中都给出了吗?没有给出的话怎样求?

  (4)学生根据数量关系解答,然后集体订正。

  330-330×90℅

  =330-297

  =33(元)

  答:比原价便宜33元。

  思考:商店出售一种录音机,打九折出售是297元,原价多少元?

  (比较这题和准备题的异同,并让学生说说它的数量关系。)

  小结:分析折扣应用题和分析百分数应用题的方法一样,要先确定单位“1”是已知还是未知,然后确定算法。

  【设计意图:在学生的现有水平和潜在水平之间提供一个向上攀登的“支架”,把复杂的学习任务加以分解,可以帮助学生较好地达到教学目标。在这里,前一教学步骤都是后一教学步骤的基础,让学生理解了“折扣”的意义才能掌握计算商品折后价钱的方法;掌握了计算商品折后价钱的方法才学习计算商品折后与折前差价的方法就容易掌握了。】

人教版六年级下册数学教案8

  教学内容

  (1)负数的初步认识

  (2)(教材第3页例2)。

  教学目标

  通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

  重点难点

  体会引入负数的必要性,初步理解负数的含义。

  情景导入

  教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。

  师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)

  新课讲授

  1。教学例2。

  (1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。

  (3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。

  2。归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗小组讨论交流。

  (2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我

  们把它叫做负数。

  (3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

  归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。

  课堂作业

  完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:

  4 +41 51负数有:—7?

  3正数有:+

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  第2课时负数的初步认识

  (2)正数:+8负数:—8

  +4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20

  0既不是正数也不是负数。

  第3课时在数轴上表示正数、0和负数

  教学内容

  借助数轴理解正数和负数的意义(教材第5页例3)。

  教学目标

  1。借助数轴初步理解正数、0、负数。

  2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

  重点难点

  认识数轴、0。

  情景导入

  教师用CAI课件演示教材第5页的.主题图。

  教师:如何在一条直线上表示出他们运动后的情况呢

  新课讲授教学例3。

  (1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。

  (2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

  (3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

  (5)引导学生观察数轴:

  ①从0起往右依次是从0起往左依次是你发现什么规律

  ②在数轴上分别找到

  和对应的点。如果从起点分别到和处,应如何运动

  师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

  课堂作业

  1。完成教材第5页的“做一做”。学生独立练习,指名汇报。

  2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

  答案:

  1。略

  2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  第3课时在数轴上表示正数、0和负数

  上面这样的直线叫做数轴。

【六年级下册数学教案】相关文章:

六年级下册数学教案01-19

六年级下册数学教案01-14

人教版六年级下册数学教案06-17

新六年级下册数学教案02-28

【推荐】六年级下册数学教案02-11

六年级下册数学教案【推荐】02-13

小学六年级下册数学教案02-13

【热门】六年级下册数学教案02-15

人教版六年级下册数学教案03-14

六年级下册数学教案(15篇)01-08