- 相关推荐
数学教案:一次函数的表达式
作为一名人民教师,通常需要用到教案来辅助教学,教案是备课向课堂教学转化的关节点。那么你有了解过教案吗?下面是小编收集整理的数学教案:一次函数的表达式 ,欢迎大家借鉴与参考,希望对大家有所帮助。
数学教案:一次函数的表达式 1
一、复习目标
知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。
能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。
情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。
教学重点与难点
重点:根据不同条件求一次函数的解析式。
难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。
教法与学法
教法分析:经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。由于是复习课,我采用边讲边练和问题教学的方式。
学法指导:在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。
二、教学过程
(一)、知识回顾:由于是复习课,所以开门见山做课前练习。
(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。因此,我用“六点”来对于本单元进行复习:
知识点1、一般形式:
1、选择题:
分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。
知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()
与Y轴交点是()
知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。而题目又往往出这种知识点,因此我把这个知识点编成顺口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是当k>0,b>0是,直线经过一二三象限,以此类推。(课件中以表格的形式向同学展示)同学们很容易记住并理解,举一些例子加以说明:
知识点4:求解析式:一般用特定系数法求函数的解析式,特定系数法的一般步骤是“设→代→解→答”。当然,在一些日常生活实际问题中,则可以根据题意直接列出解析式,这里应该说明:自变量的取值范围是函数解析式的`一部分,但具体求法不作要求。
知识点5:求交点、求面积:指一次函数的图象与坐标轴的交点坐标以及两直线交点坐标的求法。直线y=kx+b与x轴的交点坐标,与y轴的交点坐标是(0,b),这里要再次向学生解释一下,交点坐标是怎样得出来的。两条直线的交点坐标的求法:是将两直线的解析式联成一个二元一次方程组,解这个方程组,将它的解写成一个有序实数对,就是两直线的交点坐标。
求面积6:平移:
(三)、堂堂清:
(四)、小结:本节课归纳的“六个点”不是互相孤立,而是互相依托,互相渗透的,如求直线与坐标轴围成的直角三角形的面积时,需要先求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式。由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。
(五)、布置作业:作业的布置应精心设计,体现分层教学和因材施教的原则。
1、必做题:配套的试卷1张。
2、选做题:课堂上布置的思考题。
数学教案:一次函数的表达式 2
●教学目标
(一)教学知识点
1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.
(二)能力训练要求
能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.
(三)情感与价值观要求
能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.
●教学重点
根据所给信息确定一次函数的表达式.
●教学难点
用一次函数的知识解决有关现实问题.
●教学方法
启发引导法.
●教具准备
小黑板、三角板
●教学过程
Ⅰ.导入新课
[师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.
Ⅱ.讲授新课
一、试一试(阅读课文P167页)想想下面的问题,数学教案-确定一次函数的表达式。
某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析
式求出待定系数即可.
[师]请大家先思考解题的思路,然后和同伴进行交流.
[生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.
解:由题意可知v是t的正比例函数.
设v=kt
∵(2,5)在函数图象上
∴2k=5
∴k=
∴v与t的关系式为
v= t
(2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.
解:当t=3时
v=×3= =7.5(米/秒)
二、想一想
[师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.
[生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;
第二步设函数的表达式;
第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的.坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.
第四步解出k,b值.
第五步把k,b的值代回到表达式中即可.
[师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?
[生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.
三、阅读课文P167页例一,尝试分析解答下面例题
[例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的
一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.
[师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.
[生]没有画图象.
[师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?
[生]因为题中已告诉是一次函数.
[师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.
[生]解:设y=kx+b,根据题意,得
15=k+b, ①
16=3k+b. ②
由①得b=15-k
由②得b=16-3k
∴15-k=16-3k
即k=0.5
把k=0.5代入①,得k=14.5
所以在弹性限度内.
y=0.5x+14.5
当x=4时
y=0.5×4+14.5=16.5(厘米)
即物体的质量为4千克时,弹簧长度为16.5厘米.
[师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.
[生]它们的相同步骤是第二步到第四步.
求函数表达式的步骤有:
1.设函数表达式.
2.根据已知条件列出有关方程.
3.解方程.
4.把求出的k,b值代回到表达式中即可.
四.课堂练习
(一)随堂练习P168页
(题目见教材)
解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)
(题目见教材)
解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。
五.课时小结
本节课我们主要学习了根据已知条件,如何求函数的表达式.
其步骤如下:
1.设函数表达式;
2.根据已知条件列出有关k,b的方程;
3.解方程,求k,b;
4.把k,b代回表达式中,写出表达式.
六、布置作业:P169页1、2
数学教案-确定一次函数的表达式
【数学教案:一次函数的表达式 】相关文章:
一次函数教学反思02-22
一次函数图像教学反思04-09
一次函数教学反思15篇04-01
《一次函数》复习课教学反思04-21
初二数学一次函数教案12-09
初二数学一次函数教案 (6篇)12-10
初二数学一次函数教案 6篇12-09
数学教案12-30
数学教案09-28