现在位置:范文先生网>教案大全>数学教案>七年级数学教案>初一上册数学有理数教案

初一上册数学有理数教案

时间:2023-01-30 17:16:10 七年级数学教案 我要投稿

初一上册数学有理数教案汇编9篇

  作为一名教职工,就难以避免地要准备教案,借助教案可以提高教学质量,收到预期的教学效果。教案要怎么写呢?下面是小编帮大家整理的初一上册数学有理数教案,希望能够帮助到大家。

初一上册数学有理数教案汇编9篇

初一上册数学有理数教案1

  《1.2有理数》教学设计

  【学习目标】:

  1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

  2、了解分类的标准 与集合的含义;

  3、体验分类是数学上常用的处理问题方法;

  【学习重点】:正确理解有理数的概念

  【学习难点】:正确理解分类的标准和按照一定标准分类

  《1.2.1有理数》同步练习含答案

  5.对-3.14,下面说法正确的`是(B)

  A.是负数,不是分数

  B.是负数,也是分数

  C.是分数,不是有理数

  D.不是分数,是有理数

  《1.2有理数》同步练习含答案解析

  8.如果a与1互为相反数,则|a|=( )

  A.2 B.﹣2 C.1 D.﹣1

  【考点】绝对值;相反数.

  【分析】根据互为相反数的定义,知a=﹣1,从而求解.

  互为相反数的定义:只有符号不同的两个数叫互为相反数.

  【解答】解:根据a与1互为相反数,得

  a=﹣1.

  所以|a|=1.

  故选C.

  【点评】此题主要是考查了相反数的概念和绝对值的性质.

  9.若|1﹣a|=a﹣1,则a的取值范围是( )

  A.a>1 B.a≥1 C.a<1 D.a≤1

  【考点】绝对值.

  【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.

  【解答】解:∵|1﹣a|=a﹣1,

  ∴1﹣a≤0,

  ∴a≥1,

  故选B.

  【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

初一上册数学有理数教案2

  教学目的:

  1.了解计算器的`性能,并会操作和使用;

  2.会用计算器求数的平方根;

  重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

  难点:乘方和开方运算;

  教学过程:

  1.计算器的使用介绍(科学计算器)

  2.用计算器进行加、减、乘、除、乘方、开方运算

  例1用计算器求下列各式的值.

  (1)(-3.75)+(-22.5) (2)51.7(-7.2)

  解(1)

  (-3.75)+(-22.5)=-26.25

  (2)

  51.7(-7.2)=-372.24

  说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.

  随堂练习

  用计算器求值

  1.9.23+10.2 2.(-2.35)×(-0.46)

  答案1.37.8 2.1.081

初一上册数学有理数教案3

  【学习目标】

  1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

  2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;

  【学习方法】

  自主探究与合作交流相结合。

  【学习重难点】

  重点:能熟练地按照有理数的运算顺序进行混合运算

  难点:在正确运算的.基础上,适当地应用运算律简化运算

  【学习过程】

  模块一预习反馈

  一、学习准备

  1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。

  2.有理数的运算定律:__________________________________________________.

  3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

  《2.11有理数的混合运算》课后作业

  9.用符号“>”“<”“=”填空.

  42+32________2×4×3;

  (-3)2+12________2×ok3w_ads("s002");

  《2.11有理数的混合运算》同步练习

  5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

初一上册数学有理数教案4

  一、目的要求

  1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

  2、使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。

  二、内容分析

  有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。

  本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。

  三、教学过程

  复习提问:

  1、小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。

  答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。

  2、小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?

  答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的`积是0,商是0。

  3、小学学过的.除法和乘法的关系是什么?

  答:除以一个数等于乘上这个数的倒数。

  4、5÷0=?0÷0=?

  答:0不能作除数,这两个除式没有意义。

  新课讲解:

  与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。

  引例:计算:8×(-)和8÷(-4)

  8×(-)=-2,

  8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,

  ∵(-4)×(-2)=8,

  ∴8÷(-4)=-2。

  从而,8÷(-4)=8×(-),

  同样,有(-8)÷4=(-8)×,

  (-8)÷(-4)=(-8)×(-),

  这说明,有理数除法可以利用乘法来进行。

  又(-4)×=-1,4×=1,

  由4和互为倒数,说明(-4)和(-)也互为倒数。

  从而对于有理数仍然有:乘积为1的两个数互为倒数。

  提问:-2,-1的倒数各是什么?为什么?

  注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。

  由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。

  注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。

  例1计算。(见教科书第103页例1)

  解答过程见教科书第103页例1。

  阅读教科书第102页至第103页。

  课堂练习:教科书第104页练习第l,2,3题。

  提问:l、正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?

  (答:略)

  2、两数相除,商的符号如何确定?为什么?商的绝对值呢?

  答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。

  从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。

  在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。

  例2见教科书第104页例2。

  解答过程见教科书第104页例2。

  注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。

  例3见教科书第105页例3。

  分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。

  对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。

  解答过程见教科书第105页例3。

  讲解教科书例3后的两个注意点。

  课堂练习:见教科书第105页练习。

  第1题可直接约分,也可化为除法。

  第2题可先化成乘法,并利用乘法的运算律简化运算。

  课堂小结:

  阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。

  提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?

  (2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)

  四、课外作业

  习题2、9A组第1,2,3,4,5题的双数小题,第6题。

  选作题:习题2、9B组第1,2,3题双数小题。

初一上册数学有理数教案5

  教学目标

  1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;

  2、会用计算器进行较繁杂的有理数混合运算。

  教学重点

  1、有理数的混合运算;

  2、运用运算律进行有理数的混合运算的简便计算。

  教学难点

  运用运算律进行有理数的混合运算的简便计算。

  有理数的混合运算的运算顺序

  也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

  先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。

  你会根据有理数的'运算顺序计算上面的算式吗?

  2、8有理数的混合运算:同步练习

  1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

  《2、8有理数的混合运算》课后训练

  1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?

初一上册数学有理数教案6

  〖教学目的〗

  〖知识与技能目标:〗理解有理数减法的意义。

  〖过程与方法:〗会进行有理数减法运算

  〖情感态度与价值观:〗

  有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.

  〖教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。

  〖教学方法:〗引导发现法

  〖教具准备:〗尺、小黑板。

  〖教学过程:〗

  Ⅰ.复习提问:

  1.叙述有理数加法法则。

  2.两个有理数的和一定大于每一个加数吗?

  3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?

  4.3-10有意义吗?它应当等于多少?

  注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。

  Ⅱ.新课讲解:

  1.由问2、问3讲解有理数减法的意义。

  在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的.本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。

  由实际运算的例子归纳有理微减法法则。

  考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

  (-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

  等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。

  3.讲解例题:

  (l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

  解:∵15-5=10,∴15℃比5℃高10℃;

  ∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

  ∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

  比15℃低20℃。

  (2)教科书例1、例2。

  Ⅲ.做一做

  课堂练习:教科书第82页练习第1~3题。

  Ⅳ.课时小结

  有理数减法的意义。

  Ⅴ.课后作业

  1.习题2.6A组第1~9题,B组选做。

  《2.5有理数的减法》同步练习

  2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是.

  3.(考点一)计算:(1)-2- (+10);

  (2)0-(-3.6);

  (3)(-30)-(-6)-(+6)-(-15);

  《2.5有理数的减法》测试

  16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.

  姓名小明小丁小丽小文小天小乐

  体重与标准体重的差(kg)-5+3-7+4+60

  (1)谁最重?谁最轻?

  (2)最重的比最轻的重多少千克?

初一上册数学有理数教案7

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:掌握有理数的两种分类方法

  教学难点:给定的数字将被填入它所属的集合中

  教学方法:问题导向法

  学习方法:自主探究法

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  附:自学提纲:

  1.___________、____、_______统称为整数,

  2._______和_________统称为分数

  3.____ ______统称为有理数,

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的.展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

  2.判断下列说法是否正确,并说明理由。

  (1)有理数包括有整数和分数.

  (2)0.3不是有理数.

  (3)0不是有理数.

  (4)一个有理数不是正数就是负数.

  (5)一个有理数不是整数就是分数

  3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

  杨桂花:1.2.1有理数教学设计

  正数集合:{ …}负数集合:{ …}

  正整数集合:{ …}负分数集合:{ …}

  4.下列说法正确的是( )

  A.0是最小的正整数

  B.0是最小的有理数

  C.0既不是整数也不是分数

  D. 0既不是正数也不是负数

  5、下列说法正确的有( )

  (1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

初一上册数学有理数教案8

  一、知识要点

  本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

  基础知识:

  1、大于0的数叫做正数。

  2、在正数前面加上负号“-”的数叫做负数。

  3、0既不是正数也不是负数。

  4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

  5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

  数轴满足以下要求:

  (1)在直线上任取一个点表示数0,这个点叫做原点(origin);

  (2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

  (3)选取适当的长度为单位长度。

  6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

  7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

  由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

  8、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数。

  加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

  加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

  表达式:(a+b)+c=a+(b+c)

  9、有理数减法法则

  减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

  10、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0.

  乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

  乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  表达式:a(b+c)=ab+ac

  11、倒数

  1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

  12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

  13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

  根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  14、有理数的混合运算顺序

  (1)“先乘方,再乘除,最后加减”的顺序进行;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

  16、近似数(approximatenumber):

  17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

  拓展知识:

  1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

  一、(1)所有有理数组成的数集叫做有理数集;

  二、(2)所有的整数组成的数集叫做整数集。

  2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

  3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

  4、比较两个有理数大小的方法有:

  (1)根据有理数在数轴上对应的点的位置直接比较;

  (2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

  (3)做差法:a-b>0a>b;

  (4)做商法:a/b>1,b>0a>b.

  二、基础训练

  选择题

  1、下列运算中正确的是().

  A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

  2、下列各判断句中错误的是()

  A.数轴上原点的位置可以任意选定

  B.数轴上与原点的距离等于个单位的点有两个

  C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

  D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

  3、、是有理数,若>且,下列说法正确的是()

  A.一定是正数B.一定是负数C.一定是正数D.一定是负数

  4、两数相加,如果比每个加数都小,那么这两个数是()

  A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数

  5、两个非零有理数的和为零,则它们的商是()

  A.0B.-1C.+1D.不能确定

  6、一个数和它的倒数相等,则这个数是()

  A.1B.-1C.±1D.±1和0

  7、如果|a|=-a,下列成立的是()

  A.a>0B.a<0c.a>0或a=0D.a<0或a=0

  8、(-2)11+(-2)10的值是()

  A.-2B.(-2)21C.0D.-210

  9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()

  A.3瓶B.4瓶C.5瓶D.6瓶

  10、在下列说法中,正确的个数是()

  ⑴任何一个有理数都可以用数轴上的一个点来表示

  ⑵数轴上的每一个点都表示一个有理数

  ⑶任何有理数的绝对值都不可能是负数

  ⑷每个有理数都有相反数

  A、1B、2C、3D、4

  11、如果一个数的相反数比它本身大,那么这个数为()

  A、正数B、负数

  C、整数D、不等于零的有理数

  12、下列说法正确的是()

  A、几个有理数相乘,当因数有奇数个时,积为负;

  B、几个有理数相乘,当正因数有奇数个时,积为负;

  C、几个有理数相乘,当负因数有奇数个时,积为负;

  D、几个有理数相乘,当积为负数时,负因数有奇数个;

  填空题

  1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。

  2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

  3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

  4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

  5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

  6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6+……+20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.

  10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。

  11、正数–a的绝对值为__________;负数–b的绝对值为________

  12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

  13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)

  14、数轴上原点右边4.8厘米处的.点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

  三、强化训练

  1、计算:1+2+3+…+20xx+2003=__________.

  2、已知:若(a,b均为整数)则a+b=

  3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来

  4、已知,则___________

  5、已知是整数,是一个偶数,则a是(奇,偶)

  6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

  7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

  8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

  9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

  例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

  星期一二三四五

  每股涨跌+4+4.5-1-2.5-6

  第1章(1)星期三收盘时,每股是多少元?

  第2章(2)本周内最高价是每股多少元?最低价是多少元?

  第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

  第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。

  四、竞赛训练:

  1、最小的非负有理数与最大的非正有理数的和是

  2、乘积=

  3、比较大小:A=,B=,则A B

  4、满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值是( )

  A、9 B、8 C、7 D、6

  5、最小的一位数的质数与最小的两位数的质数的积是( )

  A、11 B、22 C、26 D、33

  6、比较

  7、计算:

  8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

  9、计算:

  10、计算

  11、计算1+3+5+7+…+1997+1999的值

  12、计算1+5+52+53+…+599+5100的值.

  13、有理数均不为0,且设试求代数式20xx之值。

  14、已知a、b、c为实数,且,求的值。

  15、已知:。

  16、解方程组。

  17、若a、b、c为整数,且,求的值。

  1.2.1有理数

  七年级上(1.1正数和负数,1.2有理数)

  1.2有理数

初一上册数学有理数教案9

  教学目标:

  1、明白生活中存在着无数表示相反意义的量,能举例说明;

  2、能体会引进负数的必要性和意义,建立正数和负数的数感。

  重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

  难点:对负数的意义的理解。

  教学过程:

  一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

  二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,

  2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

  如:汽车向东行驶3千米和向西行驶2千米

  温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的'数很难区分具有相反意义的量。

  一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

  如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

  三、阶梯训练:P18练习:1,2,3,4。

  四、知识小结:

  从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

  五、作业巩固:

  1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、P20习题2.1:1题。

【初一上册数学有理数教案】相关文章:

初一上册数学《有理数》教案01-12

初一上册数学有理数教案01-28

初一上册数学有理数教案(9篇)01-29

初一上册数学《有理数》教案12篇01-13

初一上册数学有理数教案9篇01-29

初一上册数学《有理数》教案(12篇)01-14

初一上册数学《有理数》教案合集12篇01-14

初一上册数学有理数教案(合集9篇)01-30

初一上册数学《有理数》教案(集合12篇)01-15