【热门】高中数学教案
作为一名老师,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。那么什么样的教案才是好的呢?下面是小编为大家整理的高中数学教案,希望能够帮助到大家。
高中数学教案1
教学目标:
1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进
学生全面认识数学的科学价值、应用价值和文化价值。
2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?
问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、知识建构
例1在边长为60cm的正方形铁片的四角切去相等的`正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。
例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。
3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简单。
六、课外作业
课本第38页第1,2,3,4题。
高中数学教案2
整体设计
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。
三维目标
1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。
2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。
3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。
4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。
重点难点
教学重点
(1)分数指数幂和根式概念的理解。
(2)掌握并运用分数指数幂的运算性质。
(3)运用有理指数幂的性质进行化简、求值。
教学难点
(1)分数指数幂及根式概念的理解。
(2)有理指数幂性质的灵活应用。
课时安排
3课时
教学过程
第1课时
作者:路致芳
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。
思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。
推进新课
新知探究
提出问题
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。
(4)用一个式子表达是,若xn=a,则x叫a的n次方根。
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。
可以看出数的平方根、立方根的概念是n次方根的概念的特例。
提出问题
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
③负数没有偶次方根;0的任何次方根都是零。
上面的文字语言可用下面的式子表示:
a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.
a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在。
零的n次方根为零,记为n0=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例。
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。
解:答案不,比如,64的立方根是4,16的`四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。
根式的概念:
式子na叫做根式,其中a叫做被开方数,n叫做根指数。
如3-27中,3叫根指数,-27叫被开方数。
思考
nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根据n次方根的意义,可得:(na)n=a.
通过探究得到:n为奇数,nan=a.
n为偶数,nan=|a|=a,-a,a≥0,a<0.
因此我们得到n次方根的运算性质:
①(na)n=a.先开方,再乘方(同次),结果为被开方数。
②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数。
n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值。
应用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。
变式训练
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。
思路2
例1下列各式中正确的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。
解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。
(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。
(3)a0=1是有条件的,即a≠0,故C项也错。
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。
例2 3+22+3-22=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。
解析:因为3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。
另解:利用整体思想,x=3+22+3-22,
两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。
变式训练
若a2-2a+1=a-1,求a的取值范围。
解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。
知能训练
(教师用多媒体显示在屏幕上)
1、以下说法正确的是()
A.正数的n次方根是一个正数
B.负数的n次方根是一个负数
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整数集)
答案:C
2、化简下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、计算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。
活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。
通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,当n为奇数,当n为偶数。
当n为奇数时,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。
点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。
课堂小结
学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。
(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
(3)负数没有偶次方根。0的任何次方根都是零。
2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.
作业
课本习题2.1A组1.
补充作业:
1、化简下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
答案:2a-13
3.5+26+5-26=__________.
解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,
不难看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
设计感想
学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学。
第2课时
作者:郝云静
导入新课
思路1.碳14测年法。原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平。而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失。对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半)。引出本节课题:指数与指数幂的运算之分数指数幂。
思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的。这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂。
推进新课
新知探究
提出问题
(1)整数指数幂的运算性质是什么?
(2)观察以下式子,并总结出规律:a>0,
①;
②a8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
④2a10=2(a5)2=a5= 。
(3)利用(2)的规律,你能表示下列式子吗?
,,,(x>0,m,n∈正整数集,且n>1)。
(4)你能用方根的意义来解释(3)的式子吗?
(5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。
讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。
根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。
(3)利用(2)的规律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
结果表明方根的结果和分数指数幂是相通的。
(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1)。
综上所述,我们得到正数的正分数指数幂的意义,教师板书:
规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1)。
提出问题
(1)负整数指数幂的意义是怎样规定的?
(2)你能得出负分数指数幂的意义吗?
(3)你认为应怎样规定零的分数指数幂的意义?
(4)综合上述,如何规定分数指数幂的意义?
(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?
(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价。
讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。
(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。
规定:正数的负分数指数幂的意义是= =1nam(a>0,m,n∈=N+,n>1)。
(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。
(4)教师板书分数指数幂的意义。分数指数幂的意义就是:
正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。
(5)若没有a>0这个条件会怎样呢?
如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。
(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。
有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。
应用示例
例1求值:(1);(2);(3)12-5;(4) 。
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。
解:(1) =22=4;
(2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.
例2用分数指数幂的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。
例3计算下列各式(式中字母都是正数)。
(1);
(2)。
活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2)=m2n-3=m2n3.
点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。
本例主要是指数幂的运算法则的综合考查和应用。
变式训练
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4计算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活动:先由学生观察以上两个式子的特征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能训练
课本本节练习1,2,3
【补充练习】
教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。
1、(1)下列运算中,正确的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改写成分数指数幂的形式为()
A. B.
C. D.
(5)化简的结果是()
A.6a B.-a C.-9a D.9a
2、计算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)设5x=4,5y=2,则52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解:。 因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x 所以原式= =12-6-63=-33. 拓展提升 1、化简:。 活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1= -13=; x+1= +13=; 。 构建解题思路教师适时启发提示。 解: = = = = 。 点拨:解这类题目,要注意运用以下公式, =a-b, =a± +b, =a±b. 2、已知,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7; (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47; (3)由于, 所以有=a+a-1+1=8. 点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点: (1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。 (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。 (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q)。 (4)说明两点: ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。 ②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用=am来计算。 作业 课本习题2.1A组2,4. 设计感想 本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。 第3课时 作者:郑芳鸣 导入新课 思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。 思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。 推进新课 新知探究 提出问题 (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律? 2的过剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能给上述思想起个名字吗? (4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗? (5)借助上面的结论你能说出一般性的结论吗? 活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容: 问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。 问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。 问题(3)上述方法实际上是无限接近,最后是逼近。 问题(4)对问题给予大胆猜测,从数轴的观点加以解释。 问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。 讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值。 (2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。 第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。 从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明是一个实数。 (3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识。 (4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数。 (5)无理数指数幂的意义: 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。 也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数。我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。 提出问题 (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数? (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗? 活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。 对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。 讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。 (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①ar?as=ar+s(a>0,r,s都是无理数)。 ②(ar)s=ars(a>0,r,s都是无理数)。 ③(a?b)r=arbr(a>0,b>0,r是无理数)。 (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。 实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R)。 ②(ar)s=ars(a>0,r,s∈R)。 ③(a?b)r=arbr(a>0,b>0,r∈R)。 应用示例 例1利用函数计算器计算。(精确到0.001) (1)0.32.1;(2)3.14-3;(3);(4) 。 活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值; 对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可; 对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可; 对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。 学生可以相互交流,挖掘计算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。 例2求值或化简。 (1)a-4b23ab2(a>0,b>0); (2)(a>0,b>0); (3)5-26+7-43-6-42. 活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。 解:(1)a-4b23ab2= =3b46a11 。 点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。 内容分析: 1、 集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。 这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念。 集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的`描述性说明。 教学过程: 一、复习引入: 1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创始人——康托尔(德国数学家)(见附录); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4)。 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…} (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…} (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…} (4)有理数集:全体有理数的集合,记作Q,Q={整数与分数} (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数} 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集,记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写。 一、教材的地位和作用 本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。 二、教学目标 (1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的.简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。 (2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。 (3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。 三、设计思路 本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。 教学的重点、难点 (一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。 (二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。 四、学生现实分析 本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。 五、教学方法 (1)教学方法及教学手段 针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。 在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。 (2)学法指导 力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。 高中数学趣味竞赛题(共10题) 1 、撒谎的有几人 5个高中生有,她们面对学校的新闻采访说了如下的话: 爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。” 玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。” 千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢? 2、她们到底是谁 有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。 穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢? 3、半只小猫 听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。 “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的'原因。那么你想想看,一共生了几只小猫呢? 4、被虫子吃掉的算式 一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。 那么,请问原来的算式是什么样子的呢? 5、巧动火柴 用16根火柴摆成5个正方形。请移动2根火柴, 使 正形变成4。 6、折过来的角 把正三角形的纸如图那样折过来时,角?的度数是多少度? 7、星形角之和 求星形尖端的角度之和。 8、啊!双胞胎? 丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。 结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢? 9、赠送和降价哪个更好? 1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好? 10、折成15度 用折纸做成45度很简单是吧。那么,请折成15度,你会吗? 教学目的: 掌握圆的标准方程,并能解决与之有关的问题 教学重点: 圆的标准方程及有关运用 教学难点: 标准方程的灵活运用 教学过程: 一、导入新课,探究标准方程 二、掌握知识,巩固练习 练习: 1、说出下列圆的'方程 ⑴圆心(3,—2)半径为5 ⑵圆心(0,3)半径为3 2、指出下列圆的圆心和半径 ⑴(x—2)2+(y+3)2=3 ⑵x2+y2=2 ⑶x2+y2—6x+4y+12=0 3、判断3x—4y—10=0和x2+y2=4的位置关系 4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程 三、引伸提高,讲解例题 例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。 2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。 例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。 例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维) 四、小结练习P771,2,3,4 五、作业P811,2,3,4 1.课题 填写课题名称(高中代数类课题) 2.教学目标 (1)知识与技能: 通过本节课的学习,掌握......知识,提高学生解决实际问题的能力; (2)过程与方法: 通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力; (3)情感态度与价值观: 通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。 3.教学重难点 (1)教学重点:本节课的知识重点 (2)教学难点:易错点、难以理解的知识点 4.教学方法(一般从中选择3个就可以了) (1)讨论法 (2)情景教学法 (3)问答法 (4)发现法 (5)讲授法 5.教学过程 (1)导入 简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题) (2)新授课程(一般分为三个小步骤) ①简单讲解本节课基础知识点(例:奇函数的定义)。 ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。 ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。 (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。) (3)课堂小结 教师提问,学生回答本节课的收获。 (4)作业提高 布置作业(尽量与实际生活相联系,有所创新)。 6.教学板书 2.高中数学教案格式 一.课题(说明本课名称) 二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务) 三.课型(说明属新授课,还是复习课) 四.课时(说明属第几课时) 五.教学重点(说明本课所必须解决的关键性问题) 六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点) 七.教学方法要根据学生实际,注重引导自学,注重启发思维 八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤) 九.作业处理(说明如何布置书面或口头作业) 十.板书设计(说明上课时准备写在黑板上的内容) 十一.教具(或称教具准备,说明辅助教学手段使用的工具) 十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法) 3.高中数学教案范文 【教学目标】 1.知识与技能 (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列: (2)账务等差数列的通项公式及其推导过程: (3)会应用等差数列通项公式解决简单问题。 2.过程与方法 在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。 3.情感、态度与价值观 通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。 【教学重点】 ①等差数列的概念; ②等差数列的通项公式 【教学难点】 ①理解等差数列“等差”的特点及通项公式的含义; ②等差数列的通项公式的推导过程. 【学情分析】 我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 【设计思路】 1、教法 ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性. ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性. ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点. 2、学法 引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法. 【教学过程】 一、创设情境,引入新课 1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么? 2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的.办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列? 3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列? 教师:以上三个问题中的数蕴涵着三列数. 学生: ①0,5,10,15,20,25,…. ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力. 二、观察归纳,形成定义 ①0,5,10,15,20,25,…. ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. 思考1上述数列有什么共同特点? 思考2根据上数列的共同特点,你能给出等差数列的一般定义吗? 思考3你能将上述的文字语言转换成数学符号语言吗? 教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念. 学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定. 教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义. (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.) 三、举一反三,巩固定义 1、判定下列数列是否为等差数列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题. 注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0. (设计意图:强化学生对等差数列“等差”特征的理解和应用). 2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么? (设计意图:强化等差数列的证明定义法) 四、利用定义,导出通项 1、已知等差数列:8,5,2,…,求第200项? 2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢? 教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法. (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力) 五、应用通项,解决问题 1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项? 2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an. 3、求等差数列3,7,11,…的第4项和第10项 教师:给出问题,让学生自己操练,教师巡视学生答题情况. 学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式 (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.) 六、反馈练习:教材13页练习1 七、归纳总结: 1、一个定义: 等差数列的定义及定义表达式 2、一个公式: 等差数列的通项公式 3、二个应用: 定义和通项公式的应用 教师:让学生思考整理,找几个代表发言,最后教师给出补充 (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.) 【设计反思】 本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率. 一、教材分析 本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。 函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。 二、学生学习情况分析 函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段: (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数; (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数; (三)高中用导数工具研究函数的单调性和最值。 1、有利条件 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。 初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。 2、不利条件 用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。 三、教学目标分析 课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。 1、知识与能力目标: ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性; ⑵理解函数的三要素的.含义及其相互关系; ⑶会求简单函数的定义域和值域 2、过程与方法目标: ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型; ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。 3、情感、态度与价值观目标: 感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。 四、教学重点、难点分析 1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数; 重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。 突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。 2、教学难点: 第一:从实际问题中提炼出抽象的概念; 第二:符号“y=f(x)”的含义的理解。 难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。 突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。 五、教法与学法分析 1、教法分析 本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。 2、学法分析 在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。 各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。 下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。 一、教材分析 (一)教材的地位和作用 “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。 (二)教学内容 本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。 二、教学目标分析 根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为: 知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。 能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。 情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。 三、重难点分析 一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。 要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的.难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。 四、教法与学法分析 (一)学法指导 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。 (二)教法分析 本节课设计的指导思想是:现代认知心理学——建构主义学习理论。 建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。 本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。 五、课堂设计 本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。 (一)创设情景,引出“三个一次”的关系 本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。 为此,我设计了以下几个问题: 1、请同学们解以下方程和不等式: ①2x-7=0;②2x-70;③2x-70 学生回答,我板书。 2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。 3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。 4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系: ①2x-7=0的解恰是函数y=2x-7的图象与x轴 交点的横坐标。 ②2x-70的解集正是函数y=2x-7的图象 在x轴的上方的点的横坐标的集合。 ③2x-70的解集正是函数y=2x-7的图象 在x轴的下方的点的横坐标的集合。 三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。 (二)比旧悟新,引出“三个二次”的关系 为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。 看函数y=x2-x-6的图象并说出: ①方程x2-x-6=0的解是 x=-2或x=3 ; ②不等式x2-x-60的解集是 {x|x-2,或x3}; ③不等式x2-x-60的解集是 {x|-23}。 此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。 学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系? (三)归纳提炼,得出“三个二次”的关系 1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。 2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。) (四)应用新知,熟练掌握一元二次不等式的解集 借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题: 例1、解不等式2x2-3x-20 解:因为Δ0,方程2x2-3x-2=0的解是 x1= ,x2=2 所以,不等式的解集是 { x| x ,或x2} 例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。 下面我们接着学习课本例2。 例2 解不等式-3x2+6x2 课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。 通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。 例3 解不等式4x2-4x+10 例4 解不等式-x2+2x-30 分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。 4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。 (五)总结 解一元二次不等式的“四部曲”: (1)把二次项的系数化为正数 (2)计算判别式Δ (3)解对应的一元二次方程 (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集 (六)作业布置 为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。 (1)必做题:习题1.5的1、3题 (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。 (七)板书设计 一元二次不等式解法(1) 五、教学效果评价 本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。 1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事! 2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的!加油吧! 3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的'成绩! 4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩! 5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的努力,你会更出色的! 6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。 7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你! 8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你! 9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步! 10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的! 1.教学目标 (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程; 2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程. (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力; 2.使学生加深对数形结合思想和待定系数法的理解; 3.增强学生用数学的意识. (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣. 2.教学重点.难点 (1)教学重点:圆的标准方程的求法及其应用. (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰 当的坐标系解决与圆有关的实际问题. 3.教学过程 (一)创设情境(启迪思维) 问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道? [引导] 画图建系 [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习) 解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0) 将x=2.7代入,得 . 即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。 (二)深入探究(获得新知) 问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程? 答:x2 y2=r2 2.如果圆心在 ,半径为 时又如何呢? [学生活动] 探究圆的方程。 [教师预设] 方法一:坐标法 如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r} 由两点间的`距离公式,点m适合的条件可表示为 ① 把①式两边平方,得(x―a)2 (y―b)2=r2 方法二:图形变换法 方法三:向量平移法 (三)应用举例(巩固提高) i.直接应用(内化新知) 问题三:1.写出下列各圆的方程(课本p77练习1) (1)圆心在原点,半径为3; (2)圆心在 ,半径为 ; (3)经过点 ,圆心在点 . 2.根据圆的方程写出圆心和半径 (1) ; (2) . ii.灵活应用(提升能力) 问题四:1.求以 为圆心,并且和直线 相切的圆的方程. [教师引导]由问题三知:圆心与半径可以确定圆. 2.已知圆的方程为 ,求过圆上一点 的切线方程. [学生活动]探究方法 [教师预设] 方法一:待定系数法(利用几何关系求斜率-垂直) 方法二:待定系数法(利用代数关系求斜率-联立方程) 方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示] 方法四:轨迹法(利用向量垂直列关系式) 3.你能归纳出具有一般性的结论吗? 已知圆的方程是 ,经过圆上一点 的切线的方程是: . iii.实际应用(回归自然) 问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m). [多媒体课件演示创设实际问题情境] (四)反馈训练(形成方法) 问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程. 2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程. 3.求圆x2 y2=13过点(-2,3)的切线方程. 4.已知圆的方程为 ,求过点 的切线方程. 教学目标: 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力. 教学重点: 比较法的应用 教学难点: 常见解题技巧 教学方法启发引导式 教学活动 (一)导入新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动)思考问题,回答. [字幕]1.比较法证明不等式的步骤是怎样的? 2.比较法证明不等式的步骤中,依据、手段、目的各是什么? 3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗? [点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题) 设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容. (二)新课讲授 【尝试探索,建立新知】 (教师活动)提出问题,引导学生研究解决问题,并点评. (学生活动)尝试解决问题. [问题] 1.化简 2.比较与()的大小. (学生解答问题) [点评] ①问题1,我们采用了因式分解的方法进行简化. ②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小. 设计意图:启发学生研究问题,建立新知,形成新的知识体系. 【例题示范,学会应用】 (教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程. (学生活动)分析,研究问题. [字幕]例题3已知 a , b 是正数,且,求证 [分析]依题目特点,作差后重新组项,采用因式分解来变形. 证明:(见课本) [点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范. [点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学 思想方法.要理解为什么分类,怎样分类.分类时要不重不漏. [字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点. [分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,要回答题目中的问题,只要比较、的大小就可以了. 解:(见课本) [点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质. 设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力. 【课堂练习】 (教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题. (学生活动)在笔记本上完成练习,甲、乙两位同学板演. [字幕]练习:1.设,比较与的大小. 2.已知,求证 设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学. 【分析归纳、小结解法】 (教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤. (学生活动)与教师一道小结,并记录在笔记本上. 1.比较法不仅是证明不等式的一种基本、重要的'方法,也是比较两个式子大小的一种重要方法. 2.对差式变形的常用方法有:配方法,通分法,因式分解法等. 3.会用分类讨论的方法确定差式的符号. 4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答. 设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系. (三)小结 (教师活动)教师小结本节课所学的知识及数学 思想与方法. (学生活动)与教师一道小结,并记录笔记. 本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题. 通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力. 设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学 思想方法. (四)布置作业 1.课本作业:P17 7、8。 2,思考题:已知,求证 3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变) 设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力. (五)课后点评 1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动. 2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用 猴子搬香蕉 一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里? 解答: 100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。 河岸的距离 两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽? 解答: 当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度 等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。 变量交换 不使用任何其他变量,交换a,b变量的值? 分析与解答 a = a+b b = a-b a= a-b 步行时间 某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。 有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到 他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间? 解答: 假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。 因此,温斯顿步行了26分钟。 付清欠款 有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元; 贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清? 解答: 贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。 贝尔必须拿出10美元的`欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。 一美元纸币 注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。 一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况: (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。 (2)这四人中没有一人能够兑开任何一枚硬币。 (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要 付的帐单款额其次,一个叫内德的男士要付的账单款额最小。 (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。 (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。 (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。 (7)随着事情的进一步发展,又出现如下的情况: (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。 现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱? 解答: 对题意的以下两点这样理解: (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。 (6)中指如果A,B换过,并且A,C换过,这就是两次交换。 一.教材分析: 集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 二.目标分析: 教学重点.难点 重点:集合的含义与表示方法. 难点:表示法的恰当选择. 教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; 2.过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3.情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 三.教法分析 1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学. 四.过程分析 (一)创设情景,揭示课题 1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。 (2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征? 引导学生互相交流.与此同时,教师对学生的活动给予评价. 2.活动:(1)列举生活中的集合的`例子;(2)分析、概括各实例的共同特征 由此引出这节要学的内容。 设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫 (二)研探新知,建构概念 1.教师利用多媒体设备向学生投影出下面7个实例: (1)1—20以内的所有质数;(2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形; (5)海南省在20xx年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)国兴中学20xx年9月入学的高一学生的全体. 2.教师组织学生分组讨论:这7个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示. 设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神 (三)质疑答辩,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解. 3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价. 4.教师提出问题,让学生思考 b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学, 高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于. 如果a是集合A的元素,就说a属于集合A,记作a?A. 如果a不是集合A的元素,就说a不属于集合A,记作a?A. (2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示. (3)让学生完成教材第6页练习第1题. 5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题. 6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式? (2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法? 使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。 设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。 (四)巩固深化,反馈矫正 教师投影学习: (1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8} (3)试选择适当的方法表示下列集合:教材第6页练习第2题. 设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象 (五)归纳小结,布置作业 小结:在师生互动中,让学生了解或体会下例问题: 1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义? 3.选择集合的表示法时应注意些什么? 设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。 作业:1.课后书面作业:第13页习题1.1A组第4题. 2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种 呢?如何表示?请同学们通过预习教材. 五.板书分析 一、教材分析 1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。 2、教学目标: 知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。 (2)进一步培养学生把空间问题转化为平面问题的化归思想。 能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。 德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。 情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。 3、重点、难点: 重点:“二面角”和“二面角的平面角”的概念 难点:“二面角的平面角”概念的形成过程 二、教法分析 1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。 2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。 3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的`教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。 三、学法指导 1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。 2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。 3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。 四、教学过程 心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。 (一)、二面角 1、揭示概念产生背景。 问题情境1、在平面几何中“角”是怎样定义的? 问题情境2、在立体几何中我们还学习了哪些角? 问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。 通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。 问题情境4、那么,应该如何定义二面角呢? 创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。 问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。 (二)、二面角的平面角 1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面 与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。 问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。 2、展现概念形成过程 (1)、类比。教师启发,寻找类比联想的对象。 问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。 问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。 问题情境9、这个平面的角的顶点及两边是如何确定的? (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。 问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。 (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。 (4)、继续探索,得到定义。 问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。 (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。 (三)、二面角及其平面角的画法 主要分为直立式和平卧式两种,用电脑《几何画板》作图。 (四)、范例分析 为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。 例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。 分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。 变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。 题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。 (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形) (五)、练习、小结与作业 练习:习题9.7的第3题 小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。 作业:习题9.7的第4题 思考题:见例题 五、板书设计(见课件) 以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢! 【高中数学教案】相关文章: 高中数学教案08-16 高中数学教案12-30 【推荐】高中数学教案01-25 高中数学教案【热门】01-25 【热】高中数学教案01-25 高中数学教案【推荐】01-25 高中数学教案【荐】01-25 【精】高中数学教案01-25 高中数学教案【热】01-25 高中数学教案【精】02-01高中数学教案3
高中数学教案4
高中数学教案5
高中数学教案6
高中数学教案7
高中数学教案8
高中数学教案9
高中数学教案10
高中数学教案11
高中数学教案12
高中数学教案13
高中数学教案14
高中数学教案15