数学组合图形的面积教案15篇
在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?以下是小编为大家整理的数学组合图形的面积教案,欢迎阅读,希望大家能够喜欢。
数学组合图形的面积教案1
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
<<<12>>>
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的'半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
数学组合图形的面积教案2
【教学内容】
北师大教材五年级上册第一单元第一课时《组合图形面积》
【学校及学生状况分析】
我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
【教材分析】
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。
【本课教学目标】
1、知识与技能
(1)、在自主探索的活动中,理解计算组合图形面积的.多种方法。
(2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)、能运用所学的知识,解决生活中组合图形的实际问题。
2、过程与方法:
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
3、情感态度与价值观:
(1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
(2)、渗透转化的数学思想和方法。
【教学重难点及关键】
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
【课前准备】
基本图形卡片、七巧板以及多媒体课件
【教学课时】
一课时
【教学设计】
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)[板书:基本图形]
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)
(设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分另计算三角形与长方形的面积,然后相加。
数学组合图形的面积教案3
教学内容:
课本第92页到第93页的教学内容
教学目标:
1、认识组合图形、会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受教学与现实生活的'密切关系,体会数学带给大家的生活美。
重、难点与关键
1.探索并掌握组合图形的面积计算方法。
2.理解并掌握组合图形的组合及分解方法。
教具准备
教学用三角尺或教学挂图、PPT课件。
教学过程
一、复习导入
1.复习。
你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?
长方形的面积=长×宽;正方形的面积=边长×边长
平行四边形的面积=底×高;三角形的面积=底×高÷2
梯形的面积=(上底+下底)×高÷2
2.导入。
3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?
二、新授课
1.认识组合图形。
出示课本第92页的四幅图。
认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
(1)四人小组讨论。
(2)小组各自展示各种分法。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想象:生活中哪些地方还有组合图形
2.探索组合图形面积的计算方法。
教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。
板书课题:组合图形的面积
(1)出示例题4(电子教材)
(2)学生独立解答。
学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。
(3)学生汇报。
解法一:5×5+5×2÷2
解法二:(5+7)×2.5÷2×2
=25+5 =12×2.5÷2×2
=30(m2) = 30(m2)
学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)
三、巩固练习
完成课本第93页的“做一做”。
问:这块地是由哪些简单的图形组成的?
1.学生独立计算。
2.学生汇报,展示思路。
四、课堂小结
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?
在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。
五、布置作业
这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?
数学组合图形的面积教案4
一、教材内容:
九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。
教学要求:
使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。
使学生掌握组合图形常用的割补方法。
教学重点、难点:
教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学过程:
以寻标追源为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。
前置回顾,展示目标;
在发散思维中探究新知,精讲点拨,完成目标;
概括总结,反馈矫正。
㈠、引标:创设情境,引导探索
⒈旧知辅垫,诱发注意
电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。
(这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)
设景感知,激活思考
电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:你能计算这幢房的侧面墙的面积吗?从而揭示课题《组合图形面积的计算》。
(这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切试一试的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)
(二)寻标:提出问题,寻找目标
叫学生齐读课题后,问:读了课题,你们想知道组合图形的'什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。
(在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)
(三)探标:追源问底,引导发现
提出问题:为了求组合图形的面积,书上是如何讲的?、除了书上的分割方法外,你还有别的分割方法来求这个组合图形的面积吗?从而引发学生的发散思维。
电脑显示学生可能想到的分割方法:
①分成一个三角形和一个长方形;
②分成两个梯形;
③分成三个三角形。
其它方法给予口头定正正误。
2.展示各种想法,得出组合图形面积的求法。
⒊发散引导,找出新的解法:
让学生观察分的方法后,提出问题:刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?
电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。
(这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)
数学组合图形的面积教案5
教学内容:92和93页练习十八
教学目标:明确组合图形的意义;
知道求组合图形的面积就是求几个图形面积的和(或差);
能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
教学过程:
一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab
“第二个图形呢?”
......
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.
教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形
1、让学生指出92页页的四幅图有哪些图形?
2、引导学生把下面的图形,组合成多边形(展示台上拼)
对学生的拼出的图形,有选择地出示其中的几个。(如下所示)
分别说出这些图形是由哪几个简单的图形组合而成。
师:怎样计算这些组合图形的面积呢?(板题)
二、组合图形面积的计算。
1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)
订正,讨论第一图的两种方法。
5×5+5×6÷2[5+(5+6)]×5÷2
=25+15=16×5÷2
=40(平方厘米)=40(平方厘米)
2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的'是一间房子侧面墙的形状。
它的面积是多少平方米?
如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)
5×5+5×2÷2
还能用其他的划分方法求出它的面积吗?(分组讨论)
汇报讨论结果。可能有下面情况。
[5+(2+5)]×(5÷2)÷2×2
小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)
三、巩固初步
1.做一做/书93页
2.练习十八/第1题
3.练习十八/第2题
(1)由中队旗引入
(2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2S总=S长-S三
5.练习十八/第3、4题
四、拓展练习
练习十八8*
课后记:
数学组合图形的面积教案6
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的.银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
数学组合图形的面积教案7
课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
1.谈话。
(1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?
预设
生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。
生2:三角形的面积计算公式是“底×高÷2”。
……
(2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?
预设
生1:我们学过长方体、正方体、圆柱、圆锥。
生2:长方体的表面积……
2.揭题。
我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。
⊙回顾与整理
1.提问:如何求组合图形、不规则图形的周长或面积?
(一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)
2.提问:如何计算立体组合图形的表面积或体积?
(1)学生分组讨论。
(2)指名汇报。(学生自由回答,合理即可)
(3)教师小结。
在计算立体组合图形的表面积时,可以把每个面的`面积进行累加,也可以借助视图来求表面积。
在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。
无论是分割还是添补,都是把复杂的图形转化成简单的图形。
⊙典型例题解析
1.课件出示典型例题1。
(1)求阴影部分的面积。(单位:cm)
分析 本题考查学生求组合图形面积的能力。
因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。
解答 20×16-12×20÷2-8×16÷2=136(cm2)
(2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)
分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。
观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。
解答 (8-3+8)×6÷2=39(cm2)
2.课件出示典型例题2。
将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。
分析 本题考查的是求立体组合图形表面积的能力。
如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。
物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积
解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1
=157+31.4+18.84+6.28
=213.52(m2)
数学组合图形的面积教案8
教学目标:
知识与能力
1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。
2、能综合运用平面图性积计算的知识,培养分析。综合的能力,发展学生的空间观念。
过程与方法
1、通过拼一拼。找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。
2、培养动手操作能力,合作交流能力和空间想象能力。
情感态度与价值观
通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。
教学重难点:
初步掌握组合图形面积的计算方法。正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的`条件,有效地选择计算方法。
教学准备:
多媒体课件、练习题卡片。
教学过程:
一、复习导入,巩固基础
1、我们已经学习了哪些基本的平面图形?
2、他们的面积计算公式分别是什么?(请学生说一说)
3、计算下面各图形的面积。(出示所学过的图形)
师:这些单个的图形称之为简单的基本图形。
师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。
二、阅读质疑,自主探究
师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。
1、同学们阅读课本。
2、同桌交流图案的组成。
3、小组和作,拼一拼,讲一讲所拼图形的组成。
4、用自己的话说一说什么是组和图形?
三、合作探究
1、出示例题4的图。
师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。 提示。
(1)这个图形有哪些简单的图形组合而成的?
(2)求它的面积就是求哪几个图形的面积?
(3)要求它们的面积需要什么条件?
(4)教师给出条件,试求出它的面积。 小组讨论,教师巡视指导。
2、汇报结果。
(1)把组合图形分成一个三角形和一个正方形。分别算出它们的面积,再想加。
(2)把组合图形分成两个完全一样的梯形,先算出一个梯形的面积,再乘以2。
(3)仔细阅读课本,补充完整。
(4)引导学生,总结方法 。 教师:想一想我们刚才是怎样求这个组和图形的面积的? 你认为那种方法简单呢?
总结:在计算组合图形的面积时,先把组合图形分成易学过的简单徒刑,然后分别求出他们的面积在相加。
四、练习巩固
1、练习二十二第一、二题。
教师出示相关的图形,请同学说说她是由那几种图形组成的。 (学生独立列式,并计算,教师巡回指导并讲解)
2、发放练习卡片给学生做一做。
说方法:长方形的面积—正方形的面积=阴影部分的面积请学生上黑板演示计算过程。 教师小结:通过刚才的练习,可见求组合图形的面积可以用相加的方法,也可以用相减的方法。
3、你能用几种方法计算下图的面积。
五、课堂小结
1、通过这一节课的学习,同学们有什么收获?
2、教师总结:组合图形在我们的生活中处处可见,应用广泛。只要我们细心观察,多动脑筋,就会掌握方法。
板书设计:
组合图形的面积
几个简单图形组合而成
(根据已知条件相加或相减)
方法:分割法或添补法
数学组合图形的面积教案9
教学内容:
教科书P75-76页的内容
教学目标:
1、知识与技能:
(1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;
(2)能正确地分析图形,并能正确地求组合图形的面积。
2、能力目标:
(1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;
(2)培养学生的自主探索、合作学习的能力。
3、情感与态度:
(1)培养学生积极参与数学学习活动的习惯;
(2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。
教学重点:
学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
教学过程:
一、创设情境,激趣导入
1、欣赏图片媒体出示:
师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?
师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”
板书:组合图形
3、复习平面图形面积计算。
二、自主学习,探究新知
1、出示(一座房子的侧墙的图)
师:考古学家们在楼兰古国的遗址发现了其中的一堵保存比较好的墙,想知道
它的面积有多大?你有办法计算吗?
2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)
(1)师:请你估一估,小华家的客厅面积大约是多少?
想一想,找同学来回答
展示学生的做法,并请他说说思考过程。
(2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?
方法有哪些?
师:如果要你求这个组合图形的面积,你可以怎样求?
(3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……
师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)
师:还有其他方法吗?
(生如果没有得出用补的方法)师拿出剪下的'三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)
板书:贴+写
师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)
2、基本练习
老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?
(汇报)
在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。
学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。
三、实践活动
师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?
出示队旗:其实,我们的中队旗就是一个组合图形。
(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答
(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?
(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)
用你认为简单的方法进行计算。先做好的小组上来板书。
反馈:你们是怎么思考的?
师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!
四通过这节课的学习,你有什么收获?
希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。
五、巩固练习,深化理解
1、展示学生课前做的七巧板拼图作品。
2、你能计算你的作品的面积吗?
小组合作、测量所需条件并计算面积。
指名交流计算方法,媒体随机出示学生解题策略。
数学组合图形的面积教案10
教学内容:教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。
教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。
教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。
教学过程:
一、复习
问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)
二、新授。
1、教学例题。
教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)
问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)
我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)
现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)
:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的'。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)
2、做例题下面”做一做“中的题目。
先让学生读题。
问:“这块菜地可以看成是由哪些图形组合而成?”
让每个学生在练习本上列式计算。做完后集体核对。
三、巩固练习。
做练习二十一中的题目。
第3题,投影片出示一面少先队的中队旗。
问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。
第4题,先让学生读题,再问:
“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)
“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)
学生在练习本上列式计算,再集体订正。
四、作业。
练习二十一的第1题和第2题。
课后:
数学组合图形的面积教案11
教材分析:
《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:
知识目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观
1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:
学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:
多媒体课件和组合图形图片。
教学过程:
一、激趣导入、复习铺垫、认识组合图形
1、介绍笑笑和她家的新房子
师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)
2、引导学生观察,复习有关平面图形面积的`计算公式
师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?
3、欣赏图片(课件出示一组图片)
师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)
4、教师总结,揭示课题并板书
师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)
二、创设情境、探究新知
笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)
1、估计地板的面积
请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)
2、采用不同的方法求客厅的面积。
同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。
(1)生动手画图
(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?
3、师生归纳方法并比较
(1)观察找特点
根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)
(2)引导比较,对方法进行分类,找出最简单的方法
师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)
(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)
(4)学生独立计算,四人板演。
(5)汇报交流,集体订正。
(6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)
4、归纳算法
刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。
师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三、实际应用、解决问题
1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)
(1)学生拿出先准备好的图形,动手画
(2)展示交流
2、计算墙壁的面积
观察图形选择方法独立计算汇报交流
同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?
观察图形选择方法独立计算汇报交流
3、求门油漆的面积。
师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?
四、归纳小结、提升知识
这节课你学会了什么?
(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)
五、拓展延伸
师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。
1.6m 4 m 10
板书设计:
组合图形面积
S=ab 分割
S=aa S=ah 转化
基本图形
S=ah2 S=(a+b)2 添补
数学组合图形的面积教案12
教学内容:
北师大版教科书第九册第75~76页的内容
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
重点、难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的`计算方法解决问题。
教具准备:
多媒体课件和组合图形图片。
教学过程:
一.引出概念,揭示主题。
1.你能看出以下图形是由那些基本图形组成的吗?
2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。
二.新授。
这是我家的客厅平面图!(课件出示客厅的平面图。)
1、估计地板的面积
师:请同学们先估一估这个地板的面积有多大呢?
2、探索不同方法。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。
生动手画图。
教师有选择的展示方法。
3.师总结分割法和添补法。
其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
4.计算:
现在你会计算这个组合图形的面积吗?
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
5.汇报计算方法及结果。
6.辨析及总结。
(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?
分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三.巩固练习。
1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。
四.小结:谈谈你的收获!
五.板书:
组合图形面积
图11.转化
图22.找条件
图33.计算图
数学组合图形的面积教案13
教学目标
1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点
能根据条件求组合图形的面积。
教学难点
理解分解图形时简单图形的`差较难分解。
教具、学具
教师指导与教学过程
学生学习活动过程
设计意图
一、试一试
教师引导学生读题,理解题意。
二、练一练第1题
1、请学生任意分割,后说说分割的是什么已经学过的图形
2、老师要求再分割
3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,
再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程
学生学习活动过程
设计意图
三、练一练第3题
学生看书上的图。教师读题,
要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?
四、作业
完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
书设计: 图形的面积
数学组合图形的面积教案14
教学内容:
课本第21页。
教学目标:
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的组合及分解方法。
教学准备:
课件
教学过程:
一、创设情境,激趣导入。
1、同学们,我们已经学习了哪些多平面图形?
导学要点:
请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。
板书:组合图形的面积
二、小组合作探究
1、出示前置性作业小组交流
复习
(1)说说你学过哪些平面图形?
(2)说说这些图形的面积计算公式?
2、自学21页的例10
(1)导学单
1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?
2)尝试计算每个图形的面积。
3)思考:组合图形的面积是怎样计算出来的?
导学要点:
(1)分割法:将整体分成几个基本图形,求出它们的面积和。
(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的'理由。
(2)小组交流
1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?
2)由于方法不同,我们计算组合图形的方法有什么不同?
3)求组合图形面积时关键是做什么?
导学要点:
(1)要根据原来图形的特点进行思考。
(2)要便于利用已知条件计算简单图形的面积。
(3)可以用不同的方法进行割补。
(3)全班交流
1)学生举例并解答(前置作业我的例子)
2)结合学生自己举的例子解答讲解。
三、应用新知,解决问题
1、课本第21页练一练
(1)生独立计算。
(2)生展示思路。
点拨:
计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。
2、课本第23页练习四第1题前两题。
点拨:
(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?
(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?
3、课本第23页练习四第二题
点拨:
引导说说组合图形面积的计算方法。
四、课堂总结
通过这节课的学习,你学到了什么知识呢?
教学反思:
数学组合图形的面积教案15
教学内容:小学数学第十二册第126页
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:进一步培养学生学会观察。
教学难点:进一步学会找隐蔽条件。
教学过程:
一、复习基本知识
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车
4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)
二、变化练习
1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)
2、学生汇报:(边出示,边板书)
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)
(2)正方形面积-角形面积列式:4×4-4×4÷2
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2
(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2
3、,并回答以下问题:
(1)由几个简单图形组成的图形叫做()。
(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
三、强化练习
1、如图:阴影部分平行四边行的.面积是36平方厘米,求出三角形的面积。(单位:厘米)
6(1)先让学生独立思考,然后再请生回答。
(2)你有几种解法?并在大屏幕出示。
9
2、求下列各个阴影部分的面积。(单位:厘米)
(1)(2)
6
6d=6
A:先让学生做在自己的本子上。
B:并让学生说一说你是怎样解答的?
C:核对,并在大屏幕演示。
D::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?
3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)
先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。
4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。
四、发散练习
如图:两个正方形摆放在一起,(大正方形边长为8厘米,小正方形边长为5厘米),图中有7个点,任意连接其中3个点,可以形成一个三角形,求三角形的面积?
(5分钟内看谁做得最多,方法最巧妙)
五、板书设计
平面组合图形的面积
(1)三角形面积+正方形面积(2)正方形面积-角形面积
列式:4×4÷2+4×4列式:4×4-4×4÷2
(3)半圆的面积+梯形面积(4)梯形面积-半圆的面积
列式:3.14×22÷2+(3+5×4÷2列式:(3+5)×4÷2-3.14×22÷2
(5)长方形面积+半圆的面积(6)长方形面积-半圆的面积
列式:3.14×22÷2+4×2列式:4×2-3.14×22÷2
【数学组合图形的面积教案】相关文章:
《组合图形的面积》数学教案(精选7篇)08-29
《组合图形的面积》数学教案(精选8篇)05-27
《组合图形面积计算》 教学反思03-15
《组合图形的面积》教学反思(精选20篇)09-21
冀教版小学五年级数学上册有关《组合图形面积》的教案(精选10篇)04-24
比较图形的面积教学反思06-11
数学图形宝宝大班教案12-01
找图形宝宝数学教案09-09
中班数学有趣的图形教案12-16