初中数学 教案
作为一名辛苦耕耘的教育工作者,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。教案要怎么写呢?以下是小编精心整理的初中数学 教案 ,欢迎大家分享。
初中数学 教案 1
一、教学目标
1.在具体的情境中,认识同类项;
2.通过对具体问题的分析及运用分配律,了解合并同类项的法则,并能进行同类项的合并.
二、教法设计
充分利用多媒体课讲展示日常生活中的情景,激发学生学习的积极性,并通过多媒体中的生活实例,构建新的知识.
三、教学重点及难点
1.教学重点:认识同类项.
2.教学难点:对同类项的理解
四、课时安排
1课时
五、师生互动活动设计
情境教学,合作学习
六、教学思路
(一)、设置情境,渗透新知
多媒体课件中出现下列一组镜头:星期天的早晨,太阳刚刚升起,慧明妈叫慧明上菜市场购买团生菜1.7斤,白萝卜3.2斤,西兰花2.3斤,猪肉1.6斤,慧明刚要去,被邻居张婶看见了,张婶叫慧明购买团生菜2.3斤,白萝卜1.3斤,西兰花1.2斤,猪肉2.4斤,其中市场价:团生菜每斤0.60元,白萝卜每斤1.20元,西兰花每斤1.80元,猪肉每斤6.5元.如果慧明一共带了50元,他按要求购买后,还剩多少元?请你帮他算一下.
同学们认真计算,教师巡视指导.
甲同学列式:
(l.7×0.60+3.2×1.20+2.3×1.80+1.6×6.5)+(2.3×0.60+1.3×1.20+1.2×1.8+2.4 ×6.5)=40.1(元);
乙同学列式:
(2.3+1.7)×0.60+(1.3+3.2)×1.2+(1.2+2.3)×1.80+(2.4+l.6)×6.5=40.1(元)
老师:甲、乙同学的答案一样,到底谁做得简便呢?
学生:乙做得简便.
老师:对,乙采用的方法是将相同的菜累计在一起,这就是我们本节课所要学习的“合并同类项”(板书:合并同类项)
(二)、预习教材,寻找本节的知识点
合作小组探究学习,确定本节的知识点.
(三)、教师精讲
1.同类项:指所含字母相同,并且相同字母的次数也相同的项叫同类项.
注意:判断几个单项式是否是同类项有二个条件:
①所含字母相同;②所含字母的指数分别相同.同时具备这两个条件的是同类项,二者缺一不可.
2.合并同类项.
合并同类项:把多项式的.同类项合并成一项.
合并同类项应注意以下几点:
①合并同类项要把握两点:一是“字母和字母的指数不变”,二是“系数相加”.
②若两个同类项的系数互为相反数,合并同类项后,这两项就相互抵消,结果为0.常数项是同类项,所以几个常数项可以合并.
③合并同类项时,只能把同类项合并成一项,不是同类项的不能合并.例如:中,没有同类项,不能再合并了,所以一个多项式合并后,其结果可能是单项式,也可能是多项式.
④合并同类项建立在数的运算基础上,因此,数的运算都可以用.
(四).反馈训练,巩固新知:
合并下列多项式中的同类项:
①
②
(五)、师生互动,归纳总结
本节主要学习了同类项的概念和合并同类项的方法,合并同类项是整式加减的基础.所以,学好本节内容至关重要,弄清哪些项是同类项是合并同类项的关键.
教学评价
①本节通过设置情景,采用引导、发现、讨论与探究教学模式来支撑整个教学过程,给学生一种美的享受;
②创造一种宽松、平等、快乐的课堂教学氛围,使学生在这种创新氛围中体验到发现知识的乐趣,体验到数学知识的应用价值;
③不足之处:学生的主体地位体现欠充分.
初中数学 教案 2
教学目标:
(一)知识目标
1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数。
(二)能力目标:
1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。
2、根据有关平均数的问题的解决,培养学生的合作意识和能力。
(三)情感目标:
1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系。
教学重点:
算术平均数,加权平均数的概念及计算。
教学难点:
加权平均数的.概念及计算。
教学方法:
讨论与启发性。
教学过程:
(一)、引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
(二)、讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、
87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X==91(分)
甲小组做得对吗?有不同求法吗?
乙小组:X=×××××××
=91(分)
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2
求出以上新的一组数的平均数X'=1
所以原数组的平均数为X=X'+90=91
想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
(1)X=(X1+X2+…+Xn)
初中数学 教案 3
教学目标
教学知识点
1 、掌握平行四边形有关概念和性质。
2 、探索并掌握平行四边形的对边相等,对角相等的性质。
能力训练要求
1 、动手操作实践的过程中,探索发现平行四边形的性质。
2 、知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想。
3 、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。
情感与价值观要求
1 、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。
2 、在进行探索的活动过程中发展学生的探究意识和合作交流的`习惯。
教学重点
探索平行四边形的性质。
教学难点
平行四边形性质的理解。
教学方法:探索归纳法
教学过程:
一、观赏生活中的图片,引入课题
下面的图片中,有你熟悉的哪些图形?
(设计这个活动,一方面可让学生认识到平行四边形在生活、生产中的应用,另一方面让学生在复杂的图形中认识平行四边形。)
二、开启智慧
1 、操作活动:
让学生进行如下操作后,思考以下问题:
将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,得到一个图形。(用几何画板平台展示整个过程)
2 、观察、讨论:
(1)两张纸片拼成了怎样的图形?它是四边形吗?
(2)这个图形中有哪些相等的角?有没有互相平行的线段?你是怎样得到的?
(3)用简洁的语言刻画这个图形的特征,并与同伴交流。
3 、平行四边形的定义
4 、介绍平行四边形的书写方式及对角线的定义。
5 、请学生举出自己身边存在的平行四边形的例子。
6 、学生动手画一个平行四边形,并表示出来。
三、知识源于悟:
1 、做一做(让学生实际动手操作)
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD重合吗?
2 、讨论:(小组交流)
(1)通过以上活动,你能得到哪些结论?
(2)平行四边形ABCD对边、对角分别有什么关系?能用别的方法验证你的结论吗?
3 、结论:平行四边形的对边相等;平行四边形的对角相等
四、能力的源泉:
1 、如果已知平行四边形一个内角的度数,能确定其它三个内角的度数吗?说说你的理由。
2 、变换角的度数,试一试。
3 、你得到了什么结论?
五、随堂练习
六、试一试:用平行四边形设计美丽的图案。
七、新课小结:
通过本节课的学习,你有什么收获?
(同桌互讲,小组交流,师生共同小结)
八、作业设计:
必做题:习题4.1第1 、 2题。
提高题:(解决问题)农民李某想发展副业致富,经考察地形后,在耕地旁边的荒地上开垦一平行四边形形状的鱼塘。能测得∠ BAD=120 0,量得AB=50米,AD=80米。请你帮助李某一下鱼塘的对边AD 、 BC之间的距离及这个鱼塘的面积。
九、课后反思
本节课,通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。
初中数学 教案 4
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1、教科书第3页练习1、2。
2、补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6。1第1、3题。
解一元一次方程
1、方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1、重点:方程的两种变形。
2、难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的.左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
初中数学 教案 5
教学目标:
1、 能较熟练地运用零指 数幂与负整指数幂的性质进行有关计算。
2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。
重点难点:
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数
难点:理解和应用整数指数幂的性质。
教学过程:
一、 复习练习:
1、 ; =; =, =, =。
2、不用计算器计算: (2)22-1+
二、指数的范围扩大到了全体整数.
1、探 索
现在,我们已经 引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数. 那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.
(1) ;(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。
3、例1计算(2mn2)-3(mn-2)-5 并且把结果化为只含有正整数指数幂的 形式。
解:原式=2-3m-3n-6m-5n10= m-8n4=
4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3;(2)(2mn 2)-2(m-2n-1)-3.
三、科学记数法
1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示 成a10n的形式,其中n是正整数 ,1∣a∣<10.例如, 864000可以写成8.64105.
2、类似地,我们可以利用10的.负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表 示成a10-n的形式,其中n是正 整数,1∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10 -4=
10-5=
归纳:10-n=
例如,上面例2(2)中的0.000021 可以 表示成2.110-5.
4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.
分 析 我们知道:1纳米= 米.由 =10-9可知,1纳米=10-9米.
所以35纳米=35 10-9米.
而3510-9=(3.510)10-9
=35101+(-9)=3.510-8,
所以 这个纳米粒子的直径为3.510-8米.
5、练 习
①用科学记数法表 示:
(1)0.000 03;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科学记数法填空:
(1)1秒是1微秒的1000000倍,则1微秒=_________秒;
(2)1毫克=_____ ____千克;
(3)1微米=_________米; (4)1纳米=_________微 米;
(5)1平方厘米=_________平方米; (6)1毫升=_________ 立方米.
本课小结 :
引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1∣a∣<10.其中n是正整数
布置作业
初中数学 教案 6
一、教学目标
【知识与技能】
掌握中位数、众数的概念,能正确找出一组数据的中位数和众数。
【过程与方法】
通过自主探索、小组讨论、合作交流探索的过程,提升分析和解决问题的能力。
【情感、态度与价值观】
体会数学和生活之间的联系,提升学习数学的自信心和乐趣。
二、教学重难点
【重点】中位数、众数的`概念。
【难点】正确找出一组数据的中位数和众数。
三、教学过程
(一)导入新课
创设求职情境,多媒体出示某公司员工的月工资表,提问:这个公司员工的收入水平怎样?
预设学生计算出月平均工资为2700元。
追问平均工资能否作为这个公司工资水平的代表。
预设学生根据绝大多数员工达不到平均工资得出平均工资不具有代表性。
教师说明本节课学习其他统计指标。引出课题。
(二)讲解新知
多媒体出示经理、职工C、职工D对工资的描述,提问:你能试着说明他们是如何看待工资的吗?
针对问题,组织前后桌四人一组,5分钟时间进行讨论。
学生思考、交流、探究,教师明确:月平均工资2700元,指所有员工工资的平均数是2700元,说明公司每月将支付工资总计2700×9=24300元;职员C的工资1900元,恰好居于所有员工工资的正中间,恰有4人的工资比他高,有4人的工资比他低,我们称它为中位数;9个员工中有3个人的工资为1800元,出现的次数最多,我们称它为众数。
提问:哪个数据描述该公司员工收入的集中趋势更合适?
明确此情境中中位数比平均数更具代表性。
追问:为什么收入的平均数比中位数高得多?观察数据明确平均数受到被极端值拉高。
(三)课堂练习
出示一组数据,请学生计算平均数、中位数、众数,选择合适的数据描述集中趋势。
(四)小结作业
小结:提问学生今天有什么收获。
作业:总结平均数、中位数和众数各自的特征。
初中数学 教案 7
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行有理数的除法运算.
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想.
2.培养学生运用数学思想指导思维活动的能力.
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
3.疑点:对零不能作除数与零没有倒数的理解.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔.
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习有理数的除法,板书课题.
【教法说明】有理数的除法同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习有理数的除法.
(二)探索新知,讲授新课
1.倒数.
(出示投影1)
4×()=1。×()=1。0.5×()=1
0×()=1。-4×()=1。×()=1
学生活动:口答以上题目.
【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数.(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】 教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.
(出示投影2)
求下列各数的`倒数:
(1)。(2)。(3)。
(4)。(5)-5。(6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置。求小数的倒数必须先化成分数再求.
2.有理数的除法
计算:8÷(-4).
计算:8×()=?(-2)
∴8÷(-4)=8×().
再尝试:-16÷(-2)=?-16×()=?
师:根据以上题目,你能说出怎样计算有理数的除法吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论.(一个学生回答)
师强调后板书:
[板书]
【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
(三)尝试反馈,巩固练习
师在黑板上出示例题.
计算(1)(-36)÷9,(2)()÷().
学生尝试做此题目.
(出示投影3)
1.计算:
(1)(-18)÷6。(2)(-63)÷(-7)。(3)(-36)÷6。
(4)1÷(-9)。(5)0÷(-8)。(6)16÷(-3).
2.计算:
(1)()÷()。(2)(-6.5)÷0.13。
(3)()÷()。(4)÷(-1).
学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).
【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答.
[板书]
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何不等于0的数,都得0.
【教法说明】通过上组练习的结果,不难看出有理数的除法与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.
(四)变式训练,培养能力
回顾例1??计算:(1)(-36)÷9。(2)()÷().
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.
(2)题仍用除以一个数等于乘以这个数的倒数较简单.
提出问题:-36:9=?。:()=?它们都属于除法运算吗?
学生活动:口答出答案.
(出示投影4)
例2?化简下列分数
(1)。(2)。(3)或3:(-36)
(4)。(5).
例3?计算
(1)()÷(-6)。(2)-3.5÷×()。
(3)(-6)÷(-4)×().
学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.
【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(-6)中.
根据方法①()÷(-6)=×()=.
根据方法②()÷(-6)=(24+)×=4+=.
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.
(五)归纳小结
师:今天我们学习了有理数的除法及倒数的概念,回答问题:
1.的倒数是__________________()。
2.。
3.若、同号,则。
若、异号,则。
若,时,则。
学生活动:分组讨论,三个学生口答.
【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.
八、随堂练习
1.填空题
(1)的倒数为__________,相反数为____________,绝对值为___________
(2)(-18)÷(-9)=_____________。
(3)÷(-2.5)=_____________。
(4)。
(5)若,是。
(6)若、互为倒数,则。
(7)或、互为相反数且,则,。
(8)当时,有意义。
(9)当时,。
(10)若,,则,和符号是_________,___________.
2.计算
(1)-4.5÷()×。
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作业
(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.
2.计算:(1)()×()÷()。
(2)-6÷(-0.25)×.
3.当,,时求的值.
(二)选做题:1.填空:用“>”“<”“=”号填空
(1)如果,则,。
(2)如果,则,。
(3)如果,则,。
(4)如果,则,。
2.判断:正确的打“√”错的打“×”
(1)()。
(2)().
3.(1)倒数等于它本身的数是______________.
(2)互为相反数的数(0除外)商是________________.
【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.
选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.
初中数学 教案 8
教学目标:
(一)知识与技能
理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。
(二)过程与方法
1.在经历用字母表示数量关系的过程中,发展符号感;
2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力
(三)情感态度价值观
1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.
2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。
教学重、难点:
重点:单项式及单项式系数、次数的概念。
难点:单项式次数的概念;单项式的书写格式及注意点。
教学方法:
引导——探究式
在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.
教具准备:
多媒体课件、小黑板.
教学过程:
一、 创设情境,引入新课
出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。
情境问题:
青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发
爱国主义情感,得到一次情感教育。
解:根据路程、速度、时间之间的关系:路程=速度×时间
2小时行驶的路程是:100×2=200(千米)
3小时行驶的路程是:100×3=300(千米)
t小时行驶的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。
如:100×a可以写成100a或100a。
代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。
代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。
设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系
让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。
1、边长为a的正方体的表面积是__,体积是__.
2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。
3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。
4、数n的相反数是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它们有什么共同的特点?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
单项式:数与字母、字母与字母的乘积。
注意:单独的一个数或字母也是单项式。
设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
火眼金睛
下列各代数式中哪些是单项式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
设计意图:加强学生对不同形式的单项式的直观认识。
解剖单项式
系数:单项式中的数字因数。
如:-3x的系数是 ,-ab的系数是 , 的系数是 。
次数:一个单项式中的所有字母的指数的和。
如:-3x的次数是 ,ab的次数是 。
小试身手
单项式 2a 2 -1.2h xy2 -t2 -32x2y
系数
次数
设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。
单项式的注意点:
(1)数与字母相乘时,数应写在字母的___,且乘号可_________;
(2)带分数作为系数时,应改写成_______的形式;
(3)式子中若出现相除时,应把除号写成____的形式;
(4)把“1”或“-1”作为项的系数时,“1”可以__不写。
行家看门道
①1x ②-1x
③a×3 ④a÷2
⑤ ⑥m的系数为1,次数为0
⑦ 的系数为2,次数为2
设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。
三、例题讲解,巩固新知
例1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有 册;
(2)底边长为a,高为h的三角形的面积 ;
(3)一个长方体的长和宽都是a,高是h,它的体积是 ;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
为 元;
(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .
解:(1)12n,它的系数是12,次数是1
(2) ,它的系数是 , 次数是2;
(3)a2h,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1。
设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。
试一试
你还能赋予0.9a一个含义吗?
设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。
大胆尝试
写出一个单项式,使它的'系数是2,次数是3.
设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。
四、拓展提高
尝试应用
用单项式填空,并指出它们的系数和次数:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;
(3)产量由m千克增长10%,就达到 千克;
设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。
能力提升
1、已知-xay是关于x、y的三次单项式,那么a= ,b= .
2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .
设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。
五、小结:
本节课你感受到了吗?
生活中处处有数学
本节课我们学了什么?你能说说你的收获吗?
1、单项式的概念: 数与字母、字母与字母的乘积。
2、单项式的系数、次数的概念。
系数:单项中的数字因数;
次数:单项中所有字母的指数和。
3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。
设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。
结束寄语
悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!
设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。
六、板书设计
2.1 整式
单项式概念 探究 例1 多
单项式的系数概念 观察交流 尝试应用 媒
单项式的次数概念 能力提升 体
七、作业:
1.作业本(必做)。
2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。
设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
八、设计理念:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。
初中数学 教案 9
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的.是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学 教案 10
教学目标
1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.
2.通过直线、射线、线段概念的教学,培养学生的几何想象能力和观察能力,用运动的观点看待几何图形.
3.培养学生对几何图形的兴趣,提高学习几何的积极性.
教学重点和难点
直线、射线、线段的概念是重点.对直线的“无限延伸”性的理解是难点.
教学过程设计
一、联系实际,提出问题
1.让学生举出实际生活中所见到的直线的实例(可请5~6位学生发言).
2.教师总结:铅笔、尺子、桌子边沿等都有长度,是可以度量的.,它们都是直线的一部分,此时给出直线的概念“直线是向两个方向无限延伸着的.”继而提问“无限延伸”怎样解释,教师可形象的归纳出“直线是无头无尾、要多长有多长.”让学生闭起眼睛想象一下.
再提问:在我们以前学过的知识中有没有真正是直线的例子?(数轴)
3.通过前面学生所举的例子,给出线段定义“直线上两个点和它们之间的部分叫做线段.”
4.教师画出一条直线,并在直线上标出一条线段,然后擦掉一部分,只剩下一条射线,先看它与直线、线段的区别,后给出射线的定义:“直线上的一点和它一旁的部分叫做射线.”
二、正确表示直线、射线和线段
1.直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线l;直线m,直线AB;直线CD.(板书表示出来)
2.线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字.如:线段a;线段AB.(板书表示出来)
3.射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a;射线OA.(板书表示出来)
三、运动变化,找出联系
1.让学生找出三者之间的区别:端点的个数,0个,1个,2个.
2.教师通过图示将线段变化为射线、直线.指出事物之间都不是孤立的,静止的,而是互相联系的,变化的.
(1)先画出线段AB,然后向一方延长,成为一条射线,再向相反的方向延长,成为一条直线.告诉学生:线段向一方延长就会成为射线,向两方延长就会成为直线.因此,直线、射线都可以看作是由线段运动而成的.
(2)再画出一条直线,在直线上任找一点,擦掉一点一旁的部分,就成为一条射线,在射线上再找一点,两点之间的部分就成为一条线段.
四、回到实际,巩固概念
1.让学生举出生活中的直线、射线和线段的事例.如:手电筒的光线,灯泡发出的光线等.
2.练习:
(1)如图1-1,A,B,C,D为直线l上的四个点.
问:图中共有几条线段?以C为端点的射线有哪几条?
(2)如图1-2,A,B,C为平面上的三个点,分别画出过点A,B;点A,C;点B,C的三条直线.
(3)如图1-3,P是直线l外一点,A是直线L上一点.过P,A作一条直线;过A作一条射线.
(4)如图1-4,图中共有多少条线段?
五、小结
1.教师提问:(1)本节课你掌握了几个几何概念?
(2)直线、射线和线段三者之间的关系是什么?
(3)本节课应该理解哪几个关键词?
(4)在表示直线、射线和线段时应注意什么?
在学生回答的基础上教师给以完善和补充,并进一步强调三者之间的关系.同时指出这三个概念是平面几何的基础.
2.再设问:直线还有什么性质呢?为下节课讲直线的性质埋下伏笔.
六、作业 p.11,1;p.12,3;p.14,1.2.
板书设计
课堂教学设计说明
1.本课的教学时间为1课时45分钟.
2.本设计对教材顺序稍加改动,先将直线、射线和线段的概念给出,然后再讲它们的性质.这样对于学生建构知识结构较为有利.
3.由于这节课为几何的起始课,从感性认识出发,在学生熟悉的实际生活中,抽象出几何的概念,便于认知结构的形成.
4.建议:本课时也可以将课型设计为“自学辅导式”,由学生自己讨论直线、射线和线段的概念,并寻找它们之间的区别与联系,这样更有利于发挥学生自己的主观能动性,参与意识更强,课堂更加活跃.
5.在有条件的地方,对三者关系的变化过程,应用计算机辅助教学更为生动有趣,“变”的意义更为明显.
初中数学 教案 11
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心.
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
例:画已知三角形的外接圆.
让学生探索课本第15页习题1.
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的.解.
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
初中数学 教案 12
一、教材、学情分析
“扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。
学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的'舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。
二、教学目标
知识与技能目标:
1、通过实际问题认识扇形统计图的含义和特点;
2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。
过程与方法目标:
1、在收集数据的过程中,学会合作学习,并了解收集数据的方法步骤;
2、在从扇形统计图中获取信息的过程中,学会相互交流、相互评价;
3、在决策和形成猜想中的过程中,感受收集和利用数据是非常重要的。
情感与态度目标:
1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;
2、在问题解决的过程中,品尝发现带来的欢乐,树立学好数学的自信心。
三、教学重点和难点
重点:在合作讨论的过程中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。
难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。
四、教学和活动过程
(一)教学准备阶段
1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);
2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。
(二)教学流程
第28届奥运会中国金牌分布统计图
1、引入 前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)
射击 4 12.5%
球类 8 25%
水上项目 8 25%
力量型项目 9 28.125%
田径 2 6.25%
体操 1 3.125%
从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)
引入设计说明:
1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。
2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。
今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。
2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。
用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。
第一问、第二问学生回答;
第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分(如图1),这个直角就是圆心角。
图1
图2
还有奔驰汽车的标志(如图2),把圆分成相等的三部分,圆心角为120o。
这样学生更直观、清楚地理解了圆心角的概念。
总结: 圆心角的度数为所占的比例乘以 360 o。
请一个学生回答第三问。
3、做一做,P152,第(2)小题后面部分,老师分析。
4、合作活动,师生互动(主要让学生学会画扇形统计图)
提出问题—→调查情况—→收集数据—→整理数据—→画图
问题:同学们从家里到学校交通情况。
学生举手,一个学生点数,另一个学生记录,得出有关数据。
不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。
①步行 20人 40% 144o
②骑自行车 15人 30% 108o
③坐公交 10人 20% 72o
④其他 5人 10% 36o
画图步骤:
1、画一个圆;
2、按各组成部分所占的比例算出各个扇形的圆心角度数;
3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。
注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。
学生再看例题:气象资料统计图,计算圆心角度数需用计算器。
5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。
6、作业 1)P153 ①②③④,思考题⑤
2)收集扇形统计图,渠道来自报纸、杂志、上网查询。
3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。
五、教学设计说明
新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。
初中数学 教案 13
目标
1联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。
2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。
重点难点
理解轴对称图形的`基本特征
教具
准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺
教学方法
手段 观察、比较、讨论、动手操作
教学过程
一。新课
1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?
2.出示教学挂图:天安门、飞机、奖杯的实物图片
将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?
生:对折后两边能完全重合。
师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。
3.练习题:(出示小黑板)
(1)P57“试一试”
判断哪几个图形是轴对称图形?试着画出对称轴。
估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。
(2)用剪刀和纸剪一个轴对称图形。
教学
过程 二。练习
1.出示挂图:(p58“想想做做”第1题)
判断哪些图形是轴对称图形?
生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图
师:钥匙图和紫荆花图为什么不是?
生:因为对折以后两部分没有完全重合。
2.看书p58“想想做做”第2题
判断哪些英文字母是轴对称图形?
生:A、C、T、M、X(有可能有的学生没有选C,还有可能有的学生选N、S、Z)
师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合?
学生试完以后会发现两部分没有完全重合。
教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。
初中数学 教案 14
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是不等式的三条基本性质。难点是不等式的基本性质3。掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础。
1、不等式的概念
用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式。
另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式。
2、当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式。但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同。因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向。
3、不等式成立与不等式不成立的意义
例如:在不等式中,字母表示未知数。当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立。
4、不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意。
一、素质教育目标
(-)知识教学点
1、了解不等式的意义。
2、理解什么是不等式成立,掌握不等式是否成立的判定方法。
3、能依题意准确迅速地列出相应的不等式。
(二)能力训练点
1、培养学生运用类比方法研究相关内容的能力。
2、训练学生运用所学知识解决实际问题的能力。
(三)德育渗透点
通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。
(四)美育渗透点
通过不等式的学习,渗透具有不等量关系的数学美。
二、学法引导
1、教学方法:观察法、引导发现法、讨论法。
2、学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用。
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式是否成立的判定方法;依题意列出正确的不等式。
(二)难点
依题意列出正确的不等式
(三)疑点
如何把题目中表示不等关系的词语准确地翻译成相应的数学符号。
(四)解决方法
在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式。
四、课时安排
一课时。
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
1、创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情。
2、从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式。
3、从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力。
七、 教学步骤
(一)明确目标
本节课主要学习依题意正确迅速地列出不等式。
(二)整体感知
通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式。
(三) 教学过程
1、创设情境,复习导入
我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:
(1)什么是等式?等式中“=”两侧的'代数式能否交换?“=”是否具有方向性?
(2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?
学生活动:首先自己思考,然后指名回答。
教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解。
②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立。
【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备。
2、探索新知,讲授新课
不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?
师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等。
【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣。
在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示。那么什么是不等式呢?请看:
提问:
(1)上述式子中有哪些表示数量关系的符号?
(2)这些符号表示什么关系?
(3)这些符号两侧的代数式可以随意交换位置吗?
(4)什么叫不等式?
学生活动:观察式予,思考并回答问题。
答案:
(1)分别使用“<”“>”“≠”。
(2)表示不等关系。
(3)不可以随意互换位置。
(4)用不等号表示不等关系的式子叫不等式。
不等号除了“<”“>”“≠”之外,还有无其他形式?
学生活动:同桌讨论,尝试得到结论。
教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”。)现在,我们来研究用“>”“<”表示的不等式。
②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成。
【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用。
②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解。
3、尝试反馈,巩固知识
同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题。
(1)用“<”或“>”境空。(抢答)
①4___-6;②-1____0③-8___-3;④-4.5___-4。
(2)用不等式表示:
①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3。
(3)学生独立完成课本第55页例1。
注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明。
学生活动:第(1)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确
教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励。
【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力。
② 教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示。
下面研究什么使不等式成立,请同学们尝试解答习题:
已知数值;-5,,3,0,2,-2.5,5.2;
(1)判断:上述数值哪些使不等式成立?哪些使不成立?
(2)说出几个使不等式成立的的数值;说出几个使不成立的数值。
学生活动:同桌研究讨论,尝试得到答案。
教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数。
师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立。例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立。
【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛。
4。变式训练,培养能力
(1)当取下列数值时,不等式是否成立?
-7,0,0.5,1,,10
(2)①用不等式表示:与3的和小于等于(不大于)6;
②写出使上述不等式成立的几个的数值;
③取何值时,不等式总成立?取何值时不成立?
学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项。
【教法说明】
①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备。
②强化思维能力和归纳总结能力。
(四)总结、扩展
学生小结,师生共同完善:
本节课的重点内容:
1、掌握不等式是否成立的判断方法;
2、依题意列出正确的不等式。
注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示。例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误。
八、布置作业
(一)必做题:P61? A组1,2,3。
(二)选做题:
1、单项选择
(1)绝对值小于3的非负整数有()
A、1,2 B。0,1 C。0,1,2 D。0,1,3
(2)下列选项中,正确的是()
A、不是负数,则
B、是大于0的数,则
C、不小于-1,则
D、是负数,则
2、依题意列不等式
(1)的3倍与7的差是非正数
(2)与6的和大于9且小于12
(3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________。
【设计说明】
1、再现本节重点,巩固所学知识。
2、有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现。
参考答案
1、<,<,>,>,<,<
2、5.2,6,8.3,11是的解,-10,-7,-4. 5,0,3不是解
(二)1。(1)C(2)D
九、 板书设计
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式。
重点研究“>”“<”
二、依题意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式能否成立
时,(√);时,(×);
时,(×)
四、归纳总结重点
(一)依题意列不等式。
(二)会判断不等式是否成立。
十、背景知识与课外阅读
费?马?数
费马(P。de Fermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献。他无意发表自己的著作,平生没有完整的著作问世。去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书。费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等。
费马于1640年前后,在验算了形如
的数当的值分别为
3,5,17,257,65537
后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数。
大约过了100年,1732年数学家欧拉(L。Eu1er)指出。
从而否定了费马的上述结论(猜想)。
尔后,人们又对进行了大量研究,发现在中,除了上述五个质数外,人们尚未再发现新的质数。
虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数。
初中数学 教案 15
教学目标:
1、掌握轴对称性质;
2、会利用轴对称的性质,作对称点,对称图形等。
教学重点:
会利用轴对称性质作对称点、对称图形等。
教学过程:
一、创设情境:
1、实践、操作:
前面我们已经学过轴对称和轴对称图形,那么它们到底具有一些什么性质呢?下面我们一起来研究。
取一张长方形的纸片,按下面步骤做一做。
将长方形纸片对折,折痕为l,
(1)在纸上画△ABC;
(2)用针尖沿△ABC各边扎几个小孔
(3)将纸展开,连续AA’、BB’、CC’
2、讨论、探究:
线段AA’、BB’、CC’与折痕l有什么关系?
二、新课讲解:
1、交流、总结:
(1)垂直于线段并且平分线段的直线叫做线段的垂直平分线。
(2)如果两个图形关于某条直线成轴对称,那么对称轴是对应点边线的垂直平分线。
(3)关于某条直线成轴对称的两个图形是全等形;
2、动手、操作
(1)打出下列成轴对称的两个图形的对应点、并用测量的方法难对应点的边线被对称轴垂直平分;
(2)说出图中相等的线段和角。
线段:AD=EF BC=FG
AD=EH CD=GH
角: ∠A=∠C ∠B=∠F
∠C=∠G ∠D=∠H
3、操作、实践:
(1)按下列要求,作点A关于直线l的.对称点A’ l
①过点A作AB⊥l,垂点头为点B;
②延长AB至A’,使A’B=AB。
如图,点A’就是点A关于直线l的对称点。
(2)请你作出下图中线段AB关于直线l的对称线段A’B’。
(说明:作对称线段其实就是作两个对称点就行了)
(3)已知点P和点P’关于一条直线对称,请你画出这条对称轴。
4、心得交流
讨论交流上述各图形作法要领、注意点,并口述画法基本步骤。
三、课堂练习:
1、画出下列图形对称轴,找出对称点。
2、下图是两个关于某条直线成轴对称的图形,请你画出它们的对称轴。
四、本节课的收获。
(1)我能找到轴对称中的对称点;
(2)会画出对称点、对称线段;
(3)能找到对称轴
五、作业 :P12 1-3
【初中数学 教案 】相关文章:
初中数学方差教案12-28
初中数学直线教案12-29
初中数学矩形教案12-30
初中数学《圆 》教案12-30
初中数学实数教案01-06
初中数学函数教案01-03
初中数学教案08-12
初中数学《矩形》教案04-18
初中数学命题教案02-23