现在位置:范文先生网>教案大全>数学教案>数学五年级下册教案

数学五年级下册教案

时间:2023-02-28 10:05:13 数学教案 我要投稿

数学五年级下册教案(集合15篇)

  作为一名无私奉献的老师,总归要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编整理的数学五年级下册教案,欢迎阅读,希望大家能够喜欢。

数学五年级下册教案(集合15篇)

数学五年级下册教案1

  教学目标:

  1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。

  2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。

  3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的方法

  教学难点:

  运用圆的周长公式解决实际问题

  教学过程:

  一、复习引入

  1.什么是圆的周长?圆的周长计算公式是什么?

  2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

  指名回答,明确计算方法。

  3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。

  二、自主先学

  出示例6和导学单

  1.题中的已知条件和所求问题是什么?。

  2.如何准确地测算出这个花坛的直径?

  3.还有别的方法吗?

  三、小组讨论

  四、交流展示

  方法一:列方程解答。 解:设花坛的.直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。 251. 23. 14 =80(米)

  答:花坛的直径是80米。

  五、质疑拓展

  问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。

  问:已知圆的周长,如何求圆的半径或直径?

  学生回答,教师板书

  ①列方程解答。②d=C r=C 2

  六、检测反馈

  1.完成练一练。

  (1)学生独立完成。

  (2)集体交流。

  提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.完成练习十上第6题

  各自填表,说说半径、直径和周长的关系

  3.完成练习十四第8题。

  (1)借助圆柱形教具演示,帮助学生理解什么是 树干横截面

  (2)学生独立思考并计算。

  (3)集体交流。

  4.完成练习十四第9题。

  (1)理解拱门的高度的含义。

  (2)学生独立计算。

  (3)集体订正。

  5.完成练习十四第10题。

  (1)学生独立思考。

  (2)集体交流,明确:先求出花圃的周长,再求出种的棵数。

  6.作业:练习十四第8、10题。

  七、课堂小结

  通过这节课的学习,你有什么收获?

数学五年级下册教案2

  教材分析:质数和合数,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。

  教学内容:九年义务教育六年制小学教科书第58页、第59页上半页的内容及练习十三中的1~4题。

  教学目的:

  1、使学生掌握质数和合数的概念,知道它们的联系和区别。

  2、能正确判断一个数是质数还是合数。

  3、培养学生判断推理能力。

  教学重点:掌握质数、合数概念,会判断一个数是质数还是合数。

  教学难点:判断一个数是质数还是合数。

  教学关键:使学生把握住质数和合数的根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。

  教具准备:纸片、投影器、投影片等。

  教学过程:

  一、复习。

  师:“我们学过求过一个数的约数,那么每个数的约数的个数又有什么规律呢?这节课我们来探索这个问题。”

  师:“谁能说说什么是约数?”

  生:“如果数a能被数b(b不等于0)整除,a就叫做b的倍数,b就做a的约数(或a的因数)。

  师:“谁又能说说每个数的约数有什么特点?”

  生:“一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。”

  二、教学新课。

  1、教学例1。

  教师出示例1(纸片)时说:“请两名学生分别写出左右两排数的约数。”点两名学生上黑板完成例1。

  例1 写出下面每个数的所有的约数。

  1的约数:1 7的约数:1、7

  2的约数:1、2 8的约数:1、2、4、8

  3的约数:1、3 9的约数:1、3、9

  4的约数:1、2、4 10的约数:1、2、5、10

  5的约数:1、5 11的约数:1、11

  6的约数:1、2、3、6 12的约数:1、2、3、4、 6、12

  师:“谁能根据这些数的约数的个数进行分类?”教师在黑板上板书:

  有一个约数的是:(生)1

  有两个约数的是:(生)2、3、5、7、11

  有两个以上约数的是:(生)4、6、8、9、10、12

  请一名学生上黑板进行分类,其余学生在书上完成。

  师:“一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)(张贴质数概念)。例如,2、3、5、7、11都是质数。谁能说说,还有哪些数是质数?”

  生:“13、17、19、23……”

  师:“质数的个数数得完吗?”

  生:“数不完,质数的个数有无数个?”

  师:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(张贴合数概念)。例如,4、6、8、9、10、12都是合数。谁能说说,还有哪些数是合数?”

  生:“4、6、8、100……”

  师:“合数的个数数得完吗?”

  生:“合数的个数数不完,它的个数有无数个。”

  师:“1不是质数,也不是合数(张贴概念)。”

  2、教学例2

  师:“根据质数和合数的定义,我们可以判断一个数是质数还是合数。请看例题。”

  投影:

  判断下面各数,哪些是质数,哪些是合数。

  17 22 29 35 37 87

  质数有:(生)17、29、37

  合数有:(生)22、35、87

  师:“根据质数和合数的定义,质数只有1和它本身两个约数,合数除了1和它本身外,还有别的约数,请某某同学上来找出所有的质数,并把答案填在投影片上。”

  学生填完后,师:“请你说说是怎样想的。”

  生1:“17、29、37是质数。因为17只有1和17两个约数,29只有1和29两个约数,37只有1和37两个约数。”

  师:“请某某同学上来找出所有的合数,并把答案填在投影片上。”学生填完后,

  师:“请你说说是怎样想的。”

  生2:“22、35、87是合数。因为22除了1和22两个约数外,还有2、11两个约数,35除了1和35两个约数外,还有5、7两个约数,87除了1和87两个约数外,还有3、29两个约数。”

  师:“这两位同学回答得很好,老师相信大家都能够判断一个数是质数,还是合数了。下面请同学在书上第59面完成中间的做一做。”

  投影:

  下面哪些数是质数,哪些是合数?

  19 21 43 67

  质数:(生)19、43、67

  合数:(生) 21

  请两名学生在投影片上分别写出答案,并请学生说说怎样想的。

  师:“请同学们做一做,20以内的数中,有哪些数是质数。”

  学生自己动手制出20以内质数表。

  师:“如果给我们一个数,如87,我们怎样知道这些数只有1和它本身两个约数,是个质数呢?”

  生:“我们可以用2、3、5、7、9……去除这个数,如果这个数不能被2、3、5、7、9……这些数整除,就说明这个数只有1和它本身两个约数,那么它就是一个质数。”

  师:“这位同学回答得非常好,判断一个数是不是质数,我们通常可以用2、3、5、7、9、11……这些数除这个数,如果都不能整除,就说明这个数是质数。”

  三、巩固练习。

  师:“下面我们一起来做几个练习,请看屏幕。”

  投影:题一

  检查下面各数的'约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里。

  27 37 41 51 57 69 83 87

  质数 合数

  投影:题二

  在自然数1~20中:

  奇数有: 偶数有:

  质数有: 合数有:

  投影:题三

  下面的判断对吗?说出理由。

  (1)所有的奇数都是质数。

  (2)所有的偶数都是合数。

  (3)在自然数中,除了质数以外都是合数。

  (4)1既不是质数,也不是合数。

  四、引导小结,板书课题。

  师:“请同学回顾一下,这节课我们学习了什么知识?”

  生:“学习了质数、合数的定义;知道了1既不是质数,也不是合数;学会了判断一个数是质数还是合数。”

  师:“今天,我们学习的知识的课题就是……(板书课题:质数和合数)。”

  五、布置作业。

  师:“请同学们从课本第62面的第1题中的99数中,先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉),自己动手制作100以内的质数表。做完以后与第59面中间的质数表对照一下,看谁能够一气呵成,制出100以内的质数表。我们今天到此为止,下课!”

  六、简评。

  这节课的主要特点是:循循善诱,层层深入。首先,教师引导学生通过对例1中12个数的约数的个数的分类,初步使学生认识到根据一个数的约数的个数,可以把自然数分为三类:质数、合数和1。其次,教师进一步让学生认识这三个概念。再次,教师让学生从例2中渐渐熟悉判断一个数是质数还是合数的方法。最后,通过练习使学生完全掌握判断一个数是质数还是合数的方法。同时,让学生知道1既不是质数也不是合数。

数学五年级下册教案3

  一 教学内容

  众数

  教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。

  二 教学目标

  1 .使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2 .能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3 .体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

  三 重点难点

  1 .重点:理解众数的含义,会求一组数据的众数。

  2 .弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

  四 教具准备

  投影。

  五 教学过程

  (一)导入

  提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。

  (二)教学实施

  1 .出示教材第122 页的例1 。

  提问:你认为参赛队员身高是多少比较合适?

  学生分组进行讨论,然后派代表发言,进行汇报。

  学生会出现以下几种结论:

  ( l )算出平均数是1 . 475 ,认为身高接近1 . 475m的比较合适。

  ( 2 )算出这组数据的中位数是1 . 485 ,身高接近1 .485m比较合适。

  ( 3 )身高是1 .52m的人最多,所以身高是1 .52m左右比较合适。

  2 .老师指出:上面这组数据中,1 . 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。

  3 .提问:平均数、中位数和众数有什么联系与区别?

  学生比较,并用自己的语言进行概括,交流。

  老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。

  4 .指导学生完成教材第123 页的“做一做”。

  学生独立完成,并结合生活经验谈一谈自己的建议。

  5 .完成教材第124 页练习二十四的第1 、2 、3 题。

  学生独立计算平均数、中位数和众数,集体交流。

  (三)思维训练

  小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。

  住户

  1 号

  2 号

  3 号

  4 号

  5 号

  6 号

  7 号

  8 号

  数量/个

  l5

  29

  l6

  2O

  22

  16

  18

  16

  ( 1 )计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)

  ( 2 )根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。

  第二课时

  一 教学内容

  众数

  教材第125 页练习二十四的第5、6 题。

  二 教学目标

  1 .能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  2 .体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

  三 重点难点

  1 .重点:理解众数的含义,会求一组数据的众数。

  2 .弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

  四 教具准备

  投影。

  五 练习过程

  (一)完成教材第125 页练习二十四的第4 题。

  学生先独立完成,说一说你发现了什么?

  指出:五(1 )班参赛选手的成绩有两个众数,88 和87 ,意味着在这次竞赛中得88 分和87 分的人同样多。而五(2 )班没有众数,则表示这次竞赛中没有集中的分数。在一组数据中,众数可能不止一个,也可能没有众数。

  (二)完成教材第125 页练习二十四的第5 题。

  学生先独立计算出平均数、中位数和众数,然后说一说用哪个数代表公司员工工资的一般水平比较合适?为什么?

  8 .完成教材第125 页练习二十四的.第6 题。

  学生以小组为单位,合作完成。先在课前调查本班学生所穿鞋子号码,然后填在统计表中,再进行分析。

  (三)课堂作业新设计

  1 .小明对本班15 名同学拥有课外书的情况进行了调查,结果如下:拥有2 本的有1 人,拥有3 本的有2 人,拥有4 本的有4 人,拥有5 本的有3 人,拥有6 本的有5 人。根据以上调查的情况,把下面的统计表填写完整。

  小明的同学拥有课外书的情况统计表

  20xx 年9 月人数

  人数

  平均每人拥有本数

  ( 1 )估算一下,这15 名同学平均拥有课外读物大约有几本?你估算的理由是什么?

  ( 2 )估算出这15 名同学拥有课外读物的平均数、中位数和众数。

  2 .小力对本单元10 户居民订报刊情况进行了调查,结果如下:没订任何报刊的有2 户,订1 份的有3 户,订2 份的有4 户,订3 份的有1 户。根据以上调查情况,把下面的统计表填写完整。

  本单元居民订报刊情况统计表20xx 年5 月

  户数

  每户订报刊份数

  ( 1 )想一想,平均每户订报份数是在1 ? 2 之间吗?为什么?

  ( 2 )计算出这10 户居民订报刊份数的平均数、中位数和众数。

  (五)课堂小结

  通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数、中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

数学五年级下册教案4

  教学内容:

  本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。

  教材分析:

  本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。

  学情分析:

  本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。

  教学目标:

  1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。

  2、掌握不规则物体的测量方法,并能测量不规则物体的体积。

  3、在实践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。

  教学重点:

  让学生掌握不规则物体体积的测量方法。

  教学难点:

  灵活运用“排水法”和“溢出法”解决实际问题。

  教具准备:

  魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶

  教学过程:

  一、 导入

  1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。

  从数学的角度来讲,魔方是一个什么样的物体?(正方体)

  怎样求出这个正方体的体积呢?(板书:V正=a)

  它的棱长是10cm,体积是多少呢?(1000cm)

  2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)

  3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)

  4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?

  像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)

  5、现在这个魔方的体积是多少呢?(还是1000cm)你是怎么想的?(板书:转化)

  【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】

  6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?

  那它的体积是多少,又该怎样求呢?

  这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。

  二、新授

  (一)测量芒果的体积

  1、你想怎样测这个芒果的体积呢?(学生汇报)

  2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。

  你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)

  3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)

  量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)

  仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)

  现在,你知道芒果的体积是多少吗?

  100是芒果的体积,它也是什么的体积?(上升的水的体积)

  4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)

  5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。

  【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】

  (二)测量石头的体积

  1、现在老师也想进行一次测量,我想测的是这块石头的体积。

  我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)

  2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)

  3、在测量的时候应该注意什么?(强调:要从里面测量)

  出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?

  这样放行不行(竖着)?为什么?(石头没有完全浸入水中)

  石头已经完全浸入水中,此时水面的高度是10cm

  4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)

  5、刚才,在我们的共同努力下,测得了这块石头的体积。

  在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)

  【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】

  6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)

  【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】

  7、其实,早在20xx多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。

  (三)测量苹果醋瓶的体积

  1、现在你们想不想亲自测量一下不规则物体的体积?

  机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260mL)

  2、现在就动手来验证一下吧。将记录填写在实验报告单中。

  实验报告单

  长方体容器的长

  长方体容器的宽

  放入前

  水面高

  放入后

  水面高

  苹果醋瓶的

  体积

  25cm

  18cm

  【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】

  3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?

  (四)总结

  通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)

  【设计意图:使学生明确“转化”思想的实质。】

  三、质疑

  看书 页,对于今天我们学习的知识,你还有什么不清楚的地方?

  四、课堂练习

  (一)填空

  1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。

  2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。

  3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的.长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。

  【练习目的:强化“转化”思想的实质。】

  (二)解决问题

  第一组

  1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?

  2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?

  【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】

  第二组

  1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?

  2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。

  3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少?

  【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】

  五、全课小结

  1、通过这节课的学习,你有什么收获?(学生汇报)

  2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。

  3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)

  一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。

  板书设计:

  转化

  有趣的测量:不规则物体的体积 规则物体的体积

  V正=a 芒果的体积 上升的水的体积

  V长=abh 石头 下降

  瓶子 溢出

数学五年级下册教案5

  教学内容:

  教科书74页例3及相关习题。

  教学目标:

  1、知识与能力: 进一步培养学生的归纳概括能力和初步的逻辑思维能力。

  2、过程与方法:使学生理解和掌握用字母表示周长、面积和体积计算公式的方法,能熟练地记忆用字母表示的周长、面积和体积公式并能用这些公式计算图形的周长、面积和体积。

  3、情感态度与价值观: 进一步感受用字母表示数量关系的优越性。

  教学重点 :

  用字母表示一些计算公式。

  教学难点:

  理解a、a的意义。

  教学准备 课件。

  教学过程:

  一、激趣导入

  师:我们前面学习了用字母表示数和简单的数量关系,请同学们用前面学习的知识回答大屏幕上的问题。

  多媒体课件显示:一本刚出的卡通书预计每本x元,每本童话书比每本卡通书贵12元。

  x+12表示(),5x表示();

  如果每本卡通书定价为9元,每本童话书应该定价为()元;

  如果每本卡通书定价为6元,买4本同样的卡通书要()元,买3本同样的童话书要()元。

  学生完成后,抽学生的作业在视频展示台上展出,并说一说自己为什么要这样填。

  师:字母不但可以表示数和简单的数量关系,还可以表示我们学习过的图形的计算公式,这节课我们就来一起研究用字母表示周长、面积和体积公式。

  (板书课题)

  二、合作探究 教学例3

  (多媒体课件出示正方体)

  师:能说一说我们学习过的正方体的底面积和体积的计算公式吗?

  生:正方形的底面积=棱长棱长,正方体的体积=棱长棱长棱长。

  师:这个公式字太多,写起来比较麻烦,如果用字母来表示这个公式,就比较简单明了。但是用字母来表示正方体的底面积和体积的计算公式与用字母表示数有些不一样,在几何图形中哪个字母表示什么是规定了的,这样便于大家都知道这个字母公式的意思。比如在正方体中,就约定俗成地用S来表示正方体的底面积,V表示正方体的体积。

  (多媒体课件在正方形棱长上标a)

  那么如果用S表示正方体的'底面积,a表示棱长,正方体的底面积计算公式又应该怎样表示呢?

  学生讨论后回答:S=aa。

  师:能解释你为什么要这样表示吗?

  学生回答

  正方体的底面积=棱长棱长

  S=aa

  师:这里aa还可以写成a,表示两个a相乘,读作a的平方。来,和老师一起读一遍。

  学生和老师一起读。

  师:现在同学们知道怎样用字母表示正方形面积计算公式了吗?

  生:S=a。

  师:如果用V表示正方体的体积,用a表示正方体的棱长,那么你认为该怎样表示正方体体积的计算公式呢?

  学生讨论后回答:V=aaa或V=aaa。

  师:能说说为什么这样表示吗?

  学生回答略。

  师:这里的aaa可以写作a,读作a的三次方或者a的立方。

  学生和老师一起读一读。

  师:你能说说正方体的体积还可以怎么表示吗?

  生:V=a。

  三、巩固测评

  课件出示75页试一试,学生完成后交流。

  四、拓展总结

  作业:练习二十一4-6题。

  说一说2a、3a、a、a各表示什么意义。

  板书设计:

  用字母表示数(二)

  S=a

  V=aaa或V=aaa V=a

数学五年级下册教案6

  教学目标:

  1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

  2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

  4、培养学生规范书写和自觉检验的好习惯。

  教学重点:

  1、 对等式的基本性质一的理解和运用。

  2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学难点:

  1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学过程:

  教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

  后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

  在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的`抽象概括。

  这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

  教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

  最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

  模式方法:观察――实验――讨论――交流――概括结论

  作业设计:自主练习1-3题。

  讨论要点

  1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

  2、 教学时,要关注学生的算术思维向方程思维的转变。

  3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

  4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

  活动总结

  本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

数学五年级下册教案7

  信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

  1、了解折线统计图的'特点和作用,初步学会折线统计图的绘制方法。

  2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

  3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

  一、引入:

  1、出示:条形统计图

  (1)某电影院上月各类影片观众人数统计图

  (2)新芽书苑20xx年3月第一星期故事书销售情况统计图

  2、提问:你已知道了条形统计图的哪些知识?

  3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

  (1) 上虞电影院20xx年(1~6)月观众人数统计图。

  (2) 百官镇一农户96~20xx年人均收入统计图。

  二、展开:

  (一)折线统计图的特点和作用。

  1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

  (1) 学生自由讨论交流。

  (2) 这两类统计图最大的区别是什么?

  2、结合条形统计图的特点,归纳折线统计图的特点。

  3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

  4、结合课本进一步深入了解折线统计图的特点和作用。

  (二)折线统计图的绘制。

  1、你认为哪幅条形统计图用折线统计图来绘制更合适?

  2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

  A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

  3、学生尝试绘制。

  (1) 出示“我们的调查资料”。

  (2) 想一想,哪几组数据用折线统计图绘制比较合适?

  (3) 请选择其中一组数据绘制。

  (4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

  (5)大组交流绘制情况,并纠错。

  三、应用

  1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

  2、出示:百官镇一农户96~20xx年人均收入统计图。

  思考:A、看图后你有什么感受?

  B、你能提出哪些数学问题?

  3、对比练习:

  (1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

  思考:A、两种鞋的销售趋势分别怎样?

  B、你有什么建议?

  (3) 出示:两家游泳衣专卖店的销售情况统计图。

  思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

  B、猜猜为什么乐乐专卖店会有这样的销售现象

  四、总结

  你又有什么新收获?你是用什么方法学会的?

  五、课外作业

  省略

数学五年级下册教案8

  教学内容:

  教科书第48页,例9、例10、试一试、练一练,练习九第7~11题。

  教学目标:

  1、使学生经历分数与小数互化的探索过程,能熟练地进行分数与小数的互化。

  2、在探索的过程中,培养学生良好的学习习惯,树立学好数学的信心。

  教学重点:分数与小数的互化。

  教学难点:比较分数与小数大小的方法。

  教学过程:

  一、复习引入

  1.说说下面小数的计数单位是什么?

  0.20。320。312

  3.今天我们一起来学习有关分数与小数的互化的知识。

  板书课题:分数与小数的互化。

  二、教学新课

  1、教学例9。

  (1)出示例9。

  (2)要比谁用的彩带长?其实是比什么?

  (3)你有什么比较的好方法吗?

  在小组中说说。小组讨论方法。

  (4)汇报方法。

  0.5米是1米的一半,3/4米比1米的.一半多,所以3/4米比0.5米长。

  把3/4化成小数,3/4=3÷4=0.75,0.75>0.5,0.5<3/4。

  指出:两种方法都可以比较出3/4>0.5,哪一种方法更合适呢?为什么?

  (5)。我们对分数和小数进行比较时,经常要把分数化成小数,谁来说说应该怎样把分数化成小数呢?(用分数的分子除以分母的方法)

  2、完成试一试。

  如果除不尽,用四舍五入法保留三位小数。

  独立完成。集体核对。

  3、教学例10。

  有时候我们也需要把小数化成分数。

  (1)出示例10。这三个小数各是几位小数?

  (2)一位小数表示几分之几?二位、三位小数各表示几分之几呢?

  (3)你们能把这些小数该成分数吗?试试看。

  学生尝试改写。你是怎么想的?

  (4)。把小数化成分数时,如果是一位小数就写成十分之几,是两位小数就写成百分之几,……同桌互相说说方法。

  4、练一练。

  观察每组数,说说你准备怎样比较这几组数的大小?

  学生独立完成。

  指导学生交流:你是怎样比较的,为什么这样做?

  三、巩固练习

  1、完成练习九第7题。

  独立完成,集体核对。

  2、完成第8、9题。

  独立完成,小组中交流。

  3、完成第10题。

  比较什么的面积大,就是比什么?怎样比好?

  独立完成。

  4、完成第11题。

  读题,理解题意。

  比谁做的快,其实比什么?应该怎样比较呢?结果呢?(谁用的时间少谁做的快)

  四、课堂

  今天学习了什么内容?能说说分数怎样化成小数吗?小数怎样化成分数呢?

数学五年级下册教案9

  教学内容:

  教材58~59“分数混合运算(二)”

  教学目标:

  1.在观察比较中,体会整数运算变律在分数运算中同样适用。

  2.利用分数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

  教学重难点:

  1.能体会整数运算律在分数运算中同样适用。

  2.能解决日常生活中的实际问题。

  教学过程:

  一、创设情景 激趣揭题

  1.计算。

  2.引入新课分数混合运

  二、扶放结合探究新知

  1.出示“第十届动物车展”情景图,从情悦图中,找出有关信息及问题,并估一估第二天的成交量是多少?

  2.理解题意,用图来表示题目中数量之间的`关系。

  3.解决问题

  ①统计图,让学生理解“第二天成交量此第一天增加了1/5” 这句话的意思是第二天增加的是第一天的1/5。

  ②用线段图来表示第二天和第一天成交的汽车辆数之间的关系。

  4.把握算法之间的联系。

  三、反馈矫正落实双基

  1.做教材第59页“试一试”第一题。总结:整数运算律在分数运算中同样适用。

  2.做教材第59页“试一试”第二题。引导学生分析问题的条件及解决问题的方法。

  四、小结评价布置预习

  1.这节课你学会了什么?有什么收获?在学习中遇到了什么没有得到解决的问题?

  2.预习分数混合运算(三)

  板书设计:

  分数混合运算(二)

  整数的运算律在分数运算中同样适用。

数学五年级下册教案10

  教材分析:

  例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。

  学情分析:

  学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。

  教学目标:

  1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

  重点难点:

  初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

  方法指导:

  自主学习合作探究

  教学过程:

  一、激趣导入

  (约5分钟)

  课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

  二、自主学习

  (约5分钟)

  1.几个数( )叫做这几个数的公因数,其中最大的一个叫做( )

  2.16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。

  3.A=225,B=235,那么A和B的`最大公因数是( )。

  4.用短除法求出99和36的最大公因数。

  三、合作交流

  (约13分钟)

  小组合作学习教材第62页例3。

  1.学具操作。

  用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是 厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

  2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

  3.总结。

  解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

  四、精讲点拨

  (约8分钟)

  根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

  五、测评总结

  (约9分钟)

  1.达标练习

  (1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?

  (2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?

  (3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?

  六、全课总结

  这节课你都学到了什么知识?有什么收获?

  七、作业布置

  练习十五5,6题。

  板书设计:

  最大公因数(2)

  铺砖问题:求公因数

数学五年级下册教案11

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的'性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

数学五年级下册教案12

  教学目标:

  1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

  2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

  3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的.简单问题。

  教学重点:

  除数是整数,商是小数的小数除法的计算方法。

  教学难点:

  除得的结果有余数,补“0”继续除。

  教学过程:

  一、复习导入

  课件出示情境主题图

  开学了,班级购置了打扫卫生用具,买6把笤帚共花了18。6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

  引导学生列出算式并独立计算:18。6÷6 24÷4

  计算后说一说整数除法与小数除法的异同。

  二、对比中探索,交流中生成

  师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

  教师把情境题中的18。6改成18。9,把24改成26。

  1、初步尝试,发现问题。

  请你尝试计算这两题,你发现了什么?

  2、独立思考,尝试解决。

  师:有余数还能不能继续除下去?该怎么继续除?试算18。9÷6

  3、讨论交流,异中求同。

  (1)在小组内汇报自己的计算方法。

  (2)展示汇报。(可能出现第4页中几种不同的方法)

  (3)对比这几种方法:有什么相同的地方?

  引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3。15元。

  4、应用方法,归纳总结。

  竖式计算26÷4

  (1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

  (2)尝试总结除数是整数的小数除法的计算方法。

  三、巩固练习

  1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

  2、错题诊所。

  209÷5=418   10÷25 =4   1。26÷18=0。7

  3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

  32÷8   12÷25   2。45÷3

  4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

  四、课堂总结

  本节课你有哪些收获?

数学五年级下册教案13

  一、教学目标

  1、知识与技能:能够准确识别长方体和正方体,掌握并熟记长方体和正方体的特点以及长方体六个面之间的关系。

  2、过程与方法:在观察、操作、体验和交流的过程中培养学生分析、比较、抽象概括能力和初步的归纳能力,发展学生的空间能力。通过观察和比较弄清长方体与正方体的联系与区别。

  3、情感态度和价值观:养成敢于探索科学之谜的精神,体验学习数学的乐趣。

  二、教学重点

  1、认识长方体特征:12条棱、6个面、8个顶点,理解并掌握相互平行的棱长度相等、相对面面积相等。

  2、认识正方体特征:12条棱、6个面、8个顶点,理解并掌握12条棱相等、6个面面积相等。

  三、教学难点

  1、理解长方体棱长总长、正方体棱长总长。

  2、对比学习长方体和正方体的特征,弄清长方体与正方体的异同。

  四、教材分析

  《长方体和正方体的`认识》是人教版(20xx)小学数学五年级下册第三单元《长方体和正方体》中第一节的内容,包括长方体和正方体两个知识,其中长方体含有例1、例2,正方体含有例3。

  教材设计意图:重在观察、操作、体验和交流的过程中培养学生分析、比较、抽象概括能力和初步的归纳能力,通过观察和比较弄清长方体与正方体的联系与区别。

  五、学情分析

  因为学生普遍对空间概念非常陌生,所以学生对新知识《长方体和正方体的认识》理解可能会比较困难。因此唯有联系生活实际入手,由浅入深,逐一穿插学习活动,让学生在观察、观察、操作、体验和交流过程中来分析和比较,从而认识长方体、正方体,最终弄清长方体与正方体的联系与区别。

  六、教学过程

  (一)创设情境,复习相关知识导入。

  1、回顾长方形及正方形。

  2、联系生活实际,认识体的空间概念。

  (二)师用实物展示法和生交流,初步认识长方体和正方体的量。

  1、师分别展示长方体、正方体模型。

  2、生认真观察并详细记录观察结果。

  3、生可在桌间或小组内交流学习长方体和正方体数量特征。

  ①长方体有12条棱,8个顶点,6个面(通常都是长方形,特殊2个正方形和4个长方形)。

  ②长方体有12条棱,8个顶点,6个面(都是正方形)

  (三)引导生通过操作、讨论,来理解体会长方体和正方体棱长间的特征。

  1、小组合作学习(活动一):

  ①利用手中的学具,动手制作一个长方体。

  ②进一步理解长方体的特征:棱长间的区别与联系。

  (长、宽、高的定义;相互平行的棱长长度相等)

  2、小组合作学习(活动二):

  ①利用手中的学具,动手制作一个正方体。

  ②进一步理解正方体的特征:棱长间的联系。

  (所有棱长长度相等;统称棱长)

  3、对比长方体和正方体棱间区别。

  (四)激励生再操作、讨论后归纳长方体和正方体面间特征。

  1、生各自独立完成(活动三):

  请学生课前剪下教材后的附页,备好长方体和正方体展开图。

  ①认真观察长方体和正方体展开图,猜想长方体和正方体面间的区别与联系。(有一些面面积相等)

  ②沿虚线折长方体和正方体,验证猜想。

  ③初步归纳长方体或正方体特征的异同。

  (长方体:相对面面积相等;正方体:所有面面积相等)

  (五)师生互动作课堂小结。

  1、长方体和正方体的共同点:都有6个面、8个顶点、12条棱。

  2、长方体和正方体的不同点:

  ①长方体:相互平行的4条棱长度相等,相对面面积相等。

  ②正方体:12条棱长度都相等,6个面都相等。

  (六)课外作业

  一根绳子既可做一个长6厘米、宽4厘米、高2厘米的长方体框架,又可做一个棱长是多少厘米的正方体宽架?

数学五年级下册教案14

  设计说明

  复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。

  1.创造性地使用教材。

  在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。

  2.重视对学生解决问题能力的培养。

  教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的'知识整理成知识网络,提高学生解决问题的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙导入新课

  1.同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?

  2.学生独立思考后,在小组内交流。

  (异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)

  3.小组汇报,全班交流,互相评价,呈现知识结构图。

  分数加减法

  设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。

  ⊙整理复习

  1.复习异分母分数加减法的计算方法。

  (1)复习异分母分数加减法应注意什么?结合具体实例说一说。

  (2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。

  + -

  结合上面的算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。

  (3)完成教材94页1题前两个小题的计算。

  + -

  解答: + -

  =+=-

  ==

  =

  2.复习分数加减混合运算的运算顺序。

  (1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。

  +- -+

  1-- 1-

  ①复习分数加减混合运算的计算方法。

  在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。

  ②复习分数加减混合运算的运算顺序。

  分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。

  ③学生在小组内讨论、计算后交流结果。

  (2)完成教材94页3题最后一竖排两个小题。

  +- -

  =+-=-

  =- =-

  == =

  ①引导学生观察第2个小题,课件出示学生的不同解法。

  --

  =-- =--

  =- =-

  = =-

  =-

  =

  ②从上面的解法中,你发现了什么?

  学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。

  3.复习分数与小数的互化。

  先想一想分数、小数是怎样互化的,再计算下面各题。

  0.75=( ) =( )

  2.12=( ) 4=( )

数学五年级下册教案15

  学习内容:

  长方体和正方体的表面积练习(教材26页第11~13题)

  学习目标:

  1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

  2.培养学生分析、解决问题的能力,以及良好的思维品质。

  教学重点:

  掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题

  教学难点:

  能灵活地解决一些实际问题

  教具运用:

  课件

  教学过程:

  一、复习导入

  1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

  2. 如果要求正方体的表面积,需要知道什么?怎样求?

  3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?

  4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

  二、课堂作业

  完成教材第26页第11~13题。

  1.第11题

  (1)分析题目的已知条件和问题。

  (2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

  (3)列式解答

  4[86+(83+63)2-11.4]

  =4[48+422-11.4]

  =4120.6=482.4(元)

  答:粉刷这个教室需要花费482.4元。

  2.第12题

  这是一道计算组合图形的表面积的`题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

  分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

  左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

  解:涂黄油漆[40(65-10)+4065+4040]2

  =(2200+2600+1600)2=12800(cm2)

  涂红油漆40652+40403=5200+4800=10000(cm2)

  答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

  3.第13题

  提示:把一个长方体从中间截断,就可以分成两个正方体。

  让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

  小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

  三、课堂小结

  通过这节课的学习,你有什么收获?还有什么问题?

  四、课后作业

  完成练习册中本课时练习。

  板书设计:

  长方体和正方体的表面积(3)

  长方体的表面积(长宽+长高+宽高) 2

  正方体的表面积边长边长6

【数学五年级下册教案】相关文章:

数学五年级下册教案09-05

数学五年级下册教案01-19

数学下册教案03-16

人教版数学五年级下册教案12-09

五年级数学下册教案07-22

五年级下册数学的教案03-13

五年级下册数学教案01-04

五年级数学下册旋转教案01-06

五年级数学下册复习教案01-14

青岛版数学五年级下册教案11-08