现在位置:范文先生网>教案大全>数学教案>《数学广角》教案

《数学广角》教案

时间:2023-03-01 13:34:16 数学教案 我要投稿

《数学广角》教案(集锦15篇)

  作为一名教师,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写呢?下面是小编帮大家整理的《数学广角》教案,仅供参考,希望能够帮助到大家。

《数学广角》教案(集锦15篇)

《数学广角》教案1

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

  找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

  本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  新课程实施已有几年的`时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  教学目标

  知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学方法

  1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

  2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  教学过程

  课前谈话

  出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

  出示天平。说说怎样利用天平来找出这瓶钙片呢?

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

  找次品的解决方法

  小组合作:从5瓶钙片中找出少装了的那瓶次品。

  (合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1) 1次或2次

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  探索最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

  零件个数

  分成的份数

  每份的个数

  至少称几次就一定能找到这个次品

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,根据学生的回答填表并板书:

  平衡 3(1,1,1)

  9(3,3,3)

  不平衡3(1,1,1) 2次

  平衡1

  9(4,4,1) 平衡2(1,1) 3次

  不平衡4(1,1,2)

  不平衡1

  平衡1

  平衡(2,2,1)

  9(2,2,2,2,1) 不平衡2(1,1)3次

  不平衡2(1,1)

  9(1,1,1,1,1,1,1,1,1) 4次

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  小结:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

  不能平均分成3份的应该怎样分呢?

  全班合作:用图示法从10个和11个零件中找出一个次品。

  (合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

  你知道这是为什么吗?你能不能对这个规律作出解释?

  [设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

  拓展提高

  猜测:这种方法在待测物品的数量更大时是否也成立呢?

  第135页做一做:

  有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

  请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

  《找次品》教学反思

  著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

  从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着

  让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

  然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

  接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

  为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

《数学广角》教案2

  教学目标:

  1、使学生学会找出最简单的排列数和组合数。

  2、培养学生初步的观察、分析及推理能力。

  3、初步培养学生有顺序地、全面的思考问题的意识。教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。

  教学准备:数字卡片、1角、2角、5角的人民币。

  实物—练习本教学过程:

  一、激趣导入同学们,谁知道今天是什么节日啊?学生回答出,可能有的学生回答不出。师说:你们收到礼物了吗?看看老师的礼物吧。大家都看过西游记吧?当师徒四人过了火焰山后,感触很多,相约要照相留念,师傅排在第一位,无须质疑,但徒弟三人谁在前面合适呢,于是就有了不同的方法。这就是老师给大家带来的圣诞节礼物——西游记中三位徒弟的排队。

  ①孙悟空②猪八戒③沙僧

  ①猪八戒②沙僧③孙悟空 … …师说:同学们想想这是按什么顺序派队呢?你们还有别的方法吗?引导出6种方式二、动手操作,探索规律1、 用1和2两张卡片摆数。(1)自己动手摆一摆,看一看谁最爱动脑筋,谁的小手最巧。

  (2)独立动手摆,然后在班内说一说自己用这两张卡片摆了那些数》。展示大家看。2、用、1、2、3三张卡片摆数。教师激励学生动脑摆一摆:从数字卡片中任选两张卡片,你能组成什么数?可以与小组同学讨论,并把结果记录下来。学生拿出卡片,自己动手摆一摆。引导学生动脑,找规律去摆,我们比一比谁摆的`数多而不重复。

  3、学生摆完后,小组交流,组长把成员摆的数记下来,并总结摆数的方法。

  4、小组汇报。师生总结,指明学生说一说。怎么才能既快又准确的写出数字(教师强调要用固定法)

  三、小组合作,巩固发展

  1、一群小朋友要去动物园看狮子,首先从家到动物园有两条路,接着从动物园门口到狮子栖息地又有三条路,同学们想一想,他们有几种路途方式?

  2、三人做握手的游戏。每两人握一次手,一共握几次。小组汇报,三人到台上有规律的握手,得出结论。(3次)

  3、师:我这每本练习本卖5角钱可以怎样付钱。请同学们拿出你的人民币,动手试一试。谁想来卖?学生用不同的方法到台上来卖。板书学生的方法。拓展:把本的价钱变成一元,还可以怎么付呢?

  4、衣服搭配出示两件不同的上衣和两条不同的裤子,请看这里有几种搭配方式?试一试。交流反馈。得出结论(四种)四、课堂小结这节课玩的有趣吗?说说你学会了什么?

《数学广角》教案3

  教材分析

  1、教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法“有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。

  2、配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

  学情分析

  1.学生思维面比较窄,基础弱,学生部分接触过“鸡兔同笼”问题,多数学生对独立学习“鸡兔同笼”问题存在一定的难度。所以在这节课中,我们就可以采用适当教学手段适时引导和学生小组合作探究相结合的教学方式,让学生在尝试,探索,交流合作中弄懂“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同”问题的.过程,初步形成解决此类问题的一般性策略。

  2.本课有三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

  3.学生认知障碍点:假设法的理解。

  教学目标

  1.使学生掌握用列表法、假设法、方程法解决问题。

  2、通过自主探索,合作交流,让学生用不同的方法解决“鸡兔同笼”问题。

  3、使学生感受数学问题的趣味性,提高学习数学的兴趣。

  教学重点和难点

  教学重点:尝试用不同的方法解决“鸡兔同笼”问题。

  教学难点:理解运用假设法解决“鸡兔同笼”问题的算理。

《数学广角》教案4

  教学内容:

  人教版义务教育课标实验教材(四上)112的例1

  教学目标:

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

  教学重点:

  体会优化思想。

  教学难点:

  探究解决问题的最优方案。

  教具准备:

  多媒体课件、探究用表格

  学具准备:

  三张圆纸片。

  教学过程:

  一、创设情境,生成问题

  1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?

  2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)

  师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。

  (这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)

  教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

  小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。

  师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”

  二、探索交流,解决问题

  1、学生操作,探究烙3张饼的方法。

  让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。

  (相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)

  2、学生演示烙饼法。

  师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)

  让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”

  得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)

  教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的.正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。

  师:老师是用什么方法烙的?(也是用快速烙饼法)

  师:使用这种方法时,你发现了什么?

  (1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)

  让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。

  (烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  3、拓展延伸:

  师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  小组活动,通过小组交流,使学生找到最佳方法。

  教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”

  (通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  在这样过程逐步形成课件表格.饼数

  2 3 4

  同时烙两张饼 快速烙饼法 两张两张地烙

  先烙两张,后三张用快速5 烙饼法

  两张两张地烙

  18 15

  烙 饼 方 法

  最少所需的时间(分)

  6 9 12

  7 8 9 10

  21 24 27 30

  4、探究规律。

  让学生仔细观察表格、小组讨论交流,说一说自己的发现。

  (根据情况决定是否给学生启示:

  1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?

  2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)

  学生在充分交流探讨的基础上,得出结论:

  1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

  得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)

  教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”

  (通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)

  三、实践应用,内化提高

  课件出示114页做一做第1题。

  教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

  1、引领理解题意。

  2、全班交流

  四、回顾整理,反思提升

  1、这节课你学到了什么?

  2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

《数学广角》教案5

  教 材 分 析

  《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会统筹思想在实际生活中的应用,以及在解决问题中的运用。

  学 情 分 析

  四年级学生在数学知识和技能方面已有了一定的基础,但是其思维能力尚停留在形象化和表面化,对于数学与生活的联系也不能灵活运用,所以在教学时,教师应做好课前准备,让学生提前了解烙饼的`方法和时间。

  教 学 目 标

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  教学重点和难点

  教学重点:体会优化思想。

  教学难点:寻找解决问题的最优方案。

《数学广角》教案6

  教学内容:

  义务教育课程标准实验教科书人教版二年级上册教材第99页的内容

  教材分析:

  排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。教材安排生动有趣的活动,让学生通过活动来学习。如在例1中安排了学生用数字卡片摆两位数的情景,在做一做中安排了学生握手的活动。

  学情分析:

  在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机超过多少电话号码就要升位等等。可采取学生独立思考和合作探究的方式教学。

  教学目标:

  1、知识与技能:

  通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

  2、数学思考:

  经历探索简单事物排列与组合规律的过程。初步理解简单事物排列与组合的不同。初步培养学生有顺序地、全面地思考问题的意识。

  3、情感与态度:

  感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。激发学生学好数学的信心。

  教学重点:

  经历探索简单事物排列与组合规律的过程。

  教学难点:

  初步理解简单事物排列与组合的不同。培养学生有顺序地、全面地思考。

  教学准备:数字卡片、课件等

  教学过程:

  一、激趣导入

  师:小朋友们,今天我们去数学广角参观一次比赛。板书:数学广角》在去的过程中会遇到很多数学问题呢!碰到困难时,我们共同解决,好不好?我们去车站坐车吧。每张车票是2.50元。现在我们有这些面值的钱,可以怎样付钱?你有几种方法?(课件: 1元、5角、2角、1角)

  (学情预设:学生可能多种答案,如一张2元一张5角,两张1元两张2角一张1角等)

  这些与顺序无关的.,叫组合。板书:组合

  [设计意图]:激趣导入,让学生在实际运用中产生兴趣,在活动中找到启示。

  二、展开活动,探索新知

  (一)探索1、2组成的两位数

  师:你们要上车呀,还要猜出密码才能把门打开,这扇门的密码,是由一个两位数组成的,猜对了就可以打开车门。提醒你们这个两位数是由数字1和2组成的,(生再猜,12和21,)这个两位数与10很接近,你们说是多少?(12)

  (学情预设:学生可能比较快的把数排列出来)

  (二)探索1、2、3能组成几个不同的两位数

  1、用1、2、3三个数字可以组成几个不同的两位数呢?

  2、教师激励学生动脑摆一摆:

  从数字卡片中任选两张卡片,你能组成什么数?可以与小组同学讨论,并把结果记录下来。(学生拿出卡片,自己动手摆一摆。)

  3、引导学生动脑,找规律去摆,我们比一比谁摆的数多而不重复。

  4、学生摆完后,小组交流,组长把成员摆的数记下来,并总结摆数的方法。

  5、小组汇报。

  6、师生总结:按照一定顺序找的数多而不重复。

  7、小结:这些与顺序有关,我们叫排列。板书:排列

  (学情预设:学生可能不能一次把这些两位数排列出来,通过动手并记录找出排列的最佳方法,可能有学生会想到用计算的方法。)

  [设计意图]:让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。

  三、小组合作,巩固发展

  1、握手

  (1)三人做握手的游戏。每两人握一次手,一共握几次。

  (2)小组汇报,三人到台上有规律的握手,得出结论。(3次)

  2、衣服搭配

  运动员们马上要参加比赛了,但是小红不乐意了,他看小清、小明都穿得这么漂亮自己不美,心里不舒服,小朋友们,你们愿意为小红重新选一套衣服吗?

  师:老师这里准备了2件衣服,2件裤子,一共有几种穿法呢?你可以用你自己喜欢的方法来解决这个问题(学生打开书本101页,可以摆一摆,也可以连线,也可以用序号的方法)

  3、比赛场次

  比赛马上就要开始了,如果3位运动员,每两人比一场,一共要进行几场比赛呢?生看书上101页第2题。

  [设计意图]:用实践活动培养学生的实践意识和应用意识,同时使学生受到学习的乐趣。并通过不同形式的练习不但联系学生的生活实际,而且巩固了所学的知识。

  四、拓展练习

  小朋友们如果我也参加比赛,四个人每两个人进行一场比赛,一共要进行几场呢?

  五、课堂小结

  比赛结束了,我们马上就要离开数学广角了,离开之前,你有什么感受吗?你有什么想说的吗?

《数学广角》教案7

  数学广角

  【 新知识点】

  利用天平找出5 件物品中的1 件次品

  数学广角

  利用天平找出多件物品中的1 件次品

  【 教学要求】

  1 .通过观察、猜想、实验、推理等活动,体会解决问题战略的多样性和运用优化的方法解决问题的有效性。

  2 .感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养同学的应用意识和解决实际问题的能力。

  【 教学建议】

  1 .加强同学的试验、操作活动。

  本单元内容的活动性和操作性比较强,大都可以采取同学动手实践、小组讨论、探究的方式教学。实际教学时,可先多给同学一些时间,让他们充沛地操作、实验、讨论、研究,找到解决问题的'多种战略。

  2 .重视培养同学的猜想、推理能力和探索精神。

  组织同学进行实验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜想、归纳、推理活动,由此促进同学养成勤于考虑、勇于探索的精神。操作活动中,同学往往会得出多种解题战略。教学时,老师应引导同学从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决战略。

《数学广角》教案8

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。

  教具准备图片

  教学过程

  一、情境导入:

  1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?

  2、这节课我们继续来学习数学广角

  二、探究新知

  教学例3

  1)出示情境图片:

  3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

  2)观察图,说说可以得到哪些信息?

  学生讨论

  3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?

  引导学生思考汇报

  4)找出最优方案

  1、书后做一做

  2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?

  这节课你有什么收获?

  五、作业:

  补充练习

  个人修改

  为什么时间节约了?

  教后反思:

  教案

  第三课时

  课题数学广角课型新授教学目标知识与技能:1、使学生初步体会对策论方法在解决实际问题中的应用。2使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。3、培养学生的应用意识和解决实际问题的能力。

  过程与方法:使学生理解优化的.思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。教具准备图片教学过程一、情境导入:

  1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?

  2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?

  3、这节课我们就来研究研究。

  二、探究新知

  1、把田忌在赛马中使用的方法在给出的表格中补充完整。出示表格

  田忌

  本场胜哲

  第一场

  上等马

  下等马

  齐王

  第二场

  中等马

  上等马

  田忌

  第三场

  下等马

  中等马

  田忌

  2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?讨论

  3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。

  4、展示各组汇报的结果

  6种,但只有一种是唯一可以获胜的。

  5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。

  数学游戏:1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。

  说明游戏规则

  2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。:如果让你先报数,为了获胜,你第一次报几?以后怎么报?

  这节课你有什么收获?

  五、作业:

  写一篇数学日记个人修改

  像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的方法,这是数学中的一种很重要的方法。

《数学广角》教案9

  教学目标:

  1、使学生通过生活中的事例,经历探究两端要栽植树的数学规律的过程,初步体会解决植树问题的方法。

  2、初步培养学生从实际植树问题中探索规律以及找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  在探究活动中发现规律,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:

  让学生理解“两端都种”情况下棵树和间隔数之间的规律,并利用规律来解决生活中的实际问题。

  教学过程:

  一、复习。(口算)

  2.5×0.4 = 1.25×8 =

  0.9×0.9 = 15+1.5 =

  8 – 1.2 = 4.5÷5 =

  二、创设情境,导入新课。

  1、情境引入。

  (1)、图文演示:3个手指之间有几个间隔呢? (2个间隔);4个手指之间有几个间隔呢? (3个间隔);5个手指之间有几个间隔呢? (4个间隔);手指的个数与间隔数有什么关系?

  (2)、图文演示:人民大会堂前的柱子根数与间隔数有什么关系?

  (3)、引出课题《植树问题》(两端都栽)

  2、重温相关名称(图文演示):什么叫棵树?什么叫间隔数?什么叫间隔长?

  三、新知探讨

  1、出示例题:同学们在全长20米的小路一旁植树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  思考与探索:

  (1)、你认为题目中哪些字词比较关键,你是怎样理解的.?

  (2)、小组内研究,可以通过画图,也可以通过列算式……解决问题.

  (3) 、让学生扮演线段图和列式计算。

  (4)、小结:总路长÷间隔长=间隔数,棵数=间隔数+1,间隔数=棵树- 1

  2、把上题的“20米”改成“100米”,你能算出一共需要多少棵树吗?

  3、再把把上题的“一旁”改成“两旁”,你能算出一共需要多少棵树吗?

  4、把三道例题对比,找出联系与区别。

  2、植树问题的题材延伸。

  我们还可以运用植树问题的知识解决下面的问题呢

  摆花篮、装路灯、电线杆、队列、楼层、公交站点......

  四、练习。

  1、填空题

  (1)、沿着小路的一旁栽树,两端都栽。

  ( )比( )多1,棵树=( )○( )。

  ( )比( )少1,间隔数=( ) ○ ( )

  (2)、马路的一边栽了25棵梧桐树,如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵银杏树?

  想:要求银杏树的棵数,也就是求25棵梧桐树的( )。算式是( )。

  (3)、 在一条18米的走廊上摆花盆(两端都放),每隔3米摆一盆花,一共摆了多少盆花?

  想:这道题要先算( ),再算( )

  2、选择题

  1、迎接来宾的小学生站在60米的校道排成一列纵队(两端都站),每两名小学生之间相距4米,这列队伍共有( )名学生。

  A、14 B、15 C、16

  2、在一条全长200米的街道 两旁安装节能路灯(两端都装),每隔20米安装一座。一共需要安装( )座节能路灯?

  A、10 B、22 C、11

  五、全课小结:大家今节课有什么收获?

  教学反思

  我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。整节课设计基于我班学生实际情况,课前创设情境激发生学习的兴趣,紧接着引出例题探讨植树问题,通过例题的画图感知:总路长÷间隔长=间隔数,棵数=间隔数+1,间隔数=棵树- 1,以例题为载体突破教学重点难点,并以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。但是,这节课我还是放不开,让学生动手操作少,让学生讨论探究少,让学生说得少等。

《数学广角》教案10

  教学内容:

  课本P100页。

  教学目标:

  1、通过活动让学生感受简单推理的过程,初步获得一些简单推理的经验。

  2、培养学生的推理能力。

  3、培养学生的合作意识和创新精神。

  教具学具:

  动物图片、语文、数学、自然等教科书。

  教学过程:

  一、游戏一:

  故事导入:森林王国要举行运动会,入场时要组织一个花束队,鸡大婶让蓝猫和非非准备一束花,鸡大婶说:他们拿的分别是红花和蓝花。蓝猫说:我拿的不是红花。鸡大婶说:请同学们猜一猜,蓝猫和非非分别拿的是什么花?

  今天有许多这样的问题等着同学们去猜,大家要比一比谁最爱动脑筋。

  [设计意图]:故事导入新课等于抓住了儿童的天性,激起了他们玩的乐趣和学习的积极性。

  二、游戏二:

  (1)出示例2的'第一组图让学生注意观察。

  让学生猜一猜他们拿的是什么书?

  请学生说一说自己是怎样想的。

  (2)、小组活动

  4人一组,两名同学分别拿语文数和数学书,其中一名同学说:我拿的不是什么书。另外两名同学比赛看谁猜得快。交换进行。

  (3)、同桌活动。

  拿出准备好的动物卡,又一名同学操作,左(右)手拿的是(不是)什么,另一名学生猜,交换进行。

  三、游戏三:

  1、找三名同学配合,创设真实情景,根据例题做一做,让学生猜一猜,说一说是怎样想的。

  2、小组活动

  A、师:把猜一猜的游戏规则说一说。4人一组轮流进行,每人至少猜一次。

  B、进行活动。教师不做任何规定,让学生撇开思维,自己去猜。

  C、小组交流,向全班汇报活动过程。

  3、观察比较例3和例2有什么不同?学生回答后教师总结。

  4、巩固练习:师生一起做游戏。

  [设计意图]:通过多种游戏活动,既给了学生充分的时间活动,一起在活动中探索新知。放手让学生随意玩,鼓励他们玩出新意,教师捕捉创新的火花,培养他们的求异思维。

  五、课堂总结

  这节课我们上得真愉快,你们在游戏中都学会了什么?

  教学反思:

《数学广角》教案11

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的.关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)10 15 20 ┉

  间距(米)5 5 5 ┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  1 30 5

  2 50

  10

  3

  4

  21

  4 1000

  101

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

《数学广角》教案12

教学目标

  1、 通过日常生活中的最简单的事例,让学生进行分析、推理得出结论,培养学生初步观察、分析与推理的能力。

  2、 培养学生的观察、操作及归纳推理的能力。

  3、 培养学生有顺序地、全面思考问题的能力。

  教学重点:

  培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。

  教学难点

  培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。

  教学过程

  一、谈话引入:

  师:日常生活中常常通过一个现象或是一句话就能推测出未知的结果,这个过程就是推理,今天我们学习推理。

  二、新课:

  1、出示例题1:把知道的信息说一说。

  有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红拿的是语文,小丽拿的不是数学书,请猜一猜小刚拿的是( )书,小丽拿的是( )书。

  2、请学生回答,并说出理由。

  师:从三个知道的信息,你能猜出小红拿的是什么书吗?

  师::从小丽说:“我拿的不是数学书”这句话能分析推理出什么?

  提问:小丽拿的是什么书?

  4、教师小结:通过分析同学说的话,推理得出正确的答案,这种思考问题的方法就叫做简单的推理,推理是依据所给的条件通过分析、推理、判断出正确的答案。

  师如果我们只分析小刚说的话,而不看小红说的'话,

  能得正确的答案吗?

  5、小结:在简单推理时,一定要全面地分析,进行判断,才能得到正确答案。5、做一做。

  1)欢欢、乐乐和笑笑是三只可爱的小狗。体重分别是7千克、5千克、9千克。乐乐比欢欢重,笑笑最轻。你能写出他们的名字吗?

  2)小冬、小雨和小伟三人分别在一、二、三班,小伟是三班的,小雨下课后去一班找小冬玩。小冬和小雨各是几班的?

  三、练习。

  1、游戏——帮小动物找家。

  森林里的小鹿、熊猫、小羊、猫和小兔分到了新房子。小鹿说:猫在我的左边。

  小羊说:我家的左边是熊猫家,右边是小兔家。

  小兔说:右数第3家就是我家。

  你能帮他们找到各自的新家吗?说说你是怎样想的?

  2、、猜一猜下面小动物各住几号房间。

  公鸡、小羊、熊猫、梅花鹿和松鼠去旅游,它们住在宾馆里的1—5号房间,服务员告诉他们:熊猫住的不是1、3、5号,梅花鹿住的号码比熊猫多一倍,小羊住在梅花鹿的右边,公鸡住的离熊猫最近,熊猫住在公鸡的右边。

  猜一猜,这几只动物各住几号房间。

  四、动笔练习。

  思考题:甲、乙、丙三位老师分别教语文、数学和英语。已知:1、每个老师只教一门课。

  2、甲上课全用普通话。

  3、外语老师是一个学生的哥哥。

  4、丙是一位女教师,她比数学老师年轻。

  请问三位老师各教什么课?

  为了能帮助广大小学生朋友们提高数学成绩和数学思维能力,数学网特地为大家整理了第九单元数学广角推理数学教案,希望能够切实的帮到大家,同时祝大家学业进步!

《数学广角》教案13

  教学内容:

  义务教育课程标准实验教科书(人教版)三年级上册第113页例2

  教学目标:

  知识与技能目标:

  学生通过观察、猜测、动手操作、合作交流等活动,找出简单事件的排列数。培养学生初步的观察、分析及推理能力,训练学生的有序思考能力和全面思考问题的意识。

  过程与方法目标:

   通过动手操作、自主探究、小组交流,让学生经历探索事物排列的规律和过程,体会解决问题策略的多样化,体验有序,全面地思考问题的方法。

  情感态度目标:

   让学生在解决问题过程中,主动与他人合作、交流、体验成功乐趣,体会许多现实生活中的问题可以用数学方法去解决,增强对数学学习的兴趣,感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:

  掌握有序排列的.方法,并用所学知识解决实际生活的问题。

  教学难

  怎样排列可以不重复,不遗漏。

  教具准备

  课件、数字卡片

  教学过程:

  一、创设情境,导入新课

   今天,段老师给大家带来几位朋友,瞧!

  课件出示:喜羊羊、美羊羊、懒羊羊、沸羊羊

  这节课我们随这4个好朋友一起去羊村逛逛,好吗?

  (播放红太狼入侵羊村的动画)

  生:看动画

  师叙述:呀!不好了,红太狼要入侵羊村了,小羊们在忙着加固大门,他们想出一个绝妙的主意,在大门上安装了密码锁。

  (课件出现羊村大门密码锁)懒羊羊:“密码?啊呀!我把密码给忘了,是379?还是739呢?我只记得这个密码是由7、3、9组成的其中一个三位数,”大家快帮懒羊羊猜猜密码可能是多少呢?

  二、动手操作、探究新知

   1、动手操作,探讨方法

  用7、3、9可以组成多少个不同的三位数呢?请大家用数字卡片,同桌合作摆一摆,并且把你们摆出的三位数记录下来:

  学生动手操作,教师巡视,点名把不同的方法板演到黑板上

  汇报交流:

  请板书的同学给大家介绍方法。其他学生评价各种方法。

  ①排列的时候,先确定百位上是3,分别交换十位和个位上的数7、9就有两种不同的排法;再确定百位上是9,分别交换十位和个位上的数3、7又有两种不同的排法,最后确定百位上是7,分别交换十位和个位上的数3、9又有两种不同的排法,合起来一共摆出6个不同的三位数,这6个三位数分别是379、397、739、793、973、937,这样按顺序排列,既不会重复也不会遗漏。

  ②先确定十位上的数,分别交换百位和个位上的数

  ③从小到大的顺序排列

  ④先确定个位上的数,分别交换十位和百位上的数

  ⑤从大到小的顺序排列

  比一比你喜欢哪种方法?学生发言

  2、引导学生小结:

  排列时,先确定一个数位上的数,然后交换其他两个数位上的数,各有两种不同的排法,合起来都能组成6个不同的三位数,这样做到既不重复也不遗漏。

  课件:喜羊羊“密码是用7、3、9组成的最大三位数”

  生:密码是973!

  师:哇,可以进去了,小朋友们我们一起去逛超市吧。

  三、生活应用,练习巩固

   1、含有数字0的排列:

  在超市买了一些东西,结帐时售货员阿姨想考考这只漂亮的小羊,告诉他“你们花的钱是用0、1、2来组成的三位数”。

  大家来猜猜花的钱可能是多少?

  师:为什么用0、1、2只能组成4个三位数?

  生:0不能做最高位。

  师:和羊羊买完了东西,小朋友们再去智慧宫里看看去有什么好玩的?

  2、智慧宫:排一排,读一读,填一填

  “读、好、书”一共有几种排法?

  妈妈为了让我把( ),特意让我每周六到图书馆( ),上周六,我借了几本( ),图书馆的阿姨对我说:“你现在正是( )的时候,这几本( ),利用业余时间( )。”

  3、照相中的排列问题:

  不知不觉,来到森林公园,这里环境优美,四个好朋友想合影留念,他们排成一排合影,可以有多少种不同的排法?

  自己想一想,然后小组交流,并且用你们喜欢的方法记录下来。

  汇报交流:学生用数字或符号表示不同的排法。说理由

  4×6=24 一共有24种排法。

  生活的问题数字化、符号化,用数学方式来解决。

  四、归纳小结,拓展延伸

  在今天的数学广角中你有什么收获?感觉大家表现得如何?

  可见在生活中,数学知识无处不在,只要我们勤观察、多动手、多动脑,就一定能探索出更多的数学奥秘。

  提问:每两只羊拍一张相片,共拍多少张?

  这是我们下节课要学得内容,这节课就学到这儿。

《数学广角》教案14

  教学目标:

  知识与技能:1、使学生初步体会运筹思想在解决实际问题中的应用。2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:体会优化的思想

  难点:寻找解决问题最优方案,提高学生解决问题的.能力。

  教具:图片

  教学过程:

  一、情境导入:

  1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?

  2、这节课我们继续来学习数学广角。板书课题:数学广角

  二、探究新知

  教学例3

  1)出示情境图片:

  码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

  2)观察图,说说可以得到哪些信息?

  问:要使三艘货船的等候时间的总和最少,应该按怎样的顺序卸货?

  学生讨论

  3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?

  列出表格,问:从表中你有什么发现吗?

  引导学生思考汇报

  4)找出最优方案

  三、巩固新知:

  1、书后做一做

  小名、小亮、小叶同时来到学校医务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?

  2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?

  四、小结:

  这节课你有什么收获?

  五、作业:

  补充练习

《数学广角》教案15

  设计说明

  1.加强动手操作训练,促进学生的思维。

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

  2.自主探索,体会优化思想。

  本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。

  课前准备

  教师准备 PPT课件 天平 药瓶

  学生准备 天平

  教学过程

  情境导入,激发兴趣

  1.你们每天上学通常要走哪条路?为什么要选择这条路?

  (生自主回答)

  2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

  师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

  师:老师准备了一架天平。如果在天平左右两边的.托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

  设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

  实践操作,自主探究

  1.提出探究要求。

  师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

  2.动手操作,汇报方法。

  学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

  3.总结归纳记录的方法。

  组织学生把用天平称的过程用图表记录下来。

  合作交流,研究探讨

  师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

  理解题意,动手操作。

  (1)先让学生读题,说说“至少”的含义。

  (2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

【《数学广角》教案】相关文章:

数学广角教案03-18

《数学广角》教案02-10

数学广角推理教案02-24

数学广角教案15篇03-18

数学广角教案(精选22篇)03-24

《数学广角》教案15篇02-10

《数学广角》教案(15篇)03-01

《数学广角》教案(汇编15篇)03-29

第九单元数学广角教案02-11

数学广角推理教案7篇02-24